MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exss Structured version   Visualization version   GIF version

Theorem exss 5408
Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
exss (∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3404 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21neeq1i 3005 . . 3 ({𝑥𝐴𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅)
3 rabn0 4332 . . 3 ({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
4 n0 4293 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
52, 3, 43bitr3i 300 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
6 vex 3445 . . . . . 6 𝑧 ∈ V
76snss 4733 . . . . 5 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ {𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
8 ssab2 4024 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
9 sstr2 3939 . . . . . 6 ({𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} → ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴 → {𝑧} ⊆ 𝐴))
108, 9mpi 20 . . . . 5 ({𝑧} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑧} ⊆ 𝐴)
117, 10sylbi 216 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑧} ⊆ 𝐴)
12 simpr 485 . . . . . . . 8 (([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) → [𝑧 / 𝑥]𝜑)
13 equsb1v 2102 . . . . . . . . 9 [𝑧 / 𝑥]𝑥 = 𝑧
14 velsn 4589 . . . . . . . . . 10 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
1514sbbii 2078 . . . . . . . . 9 ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ↔ [𝑧 / 𝑥]𝑥 = 𝑧)
1613, 15mpbir 230 . . . . . . . 8 [𝑧 / 𝑥]𝑥 ∈ {𝑧}
1712, 16jctil 520 . . . . . . 7 (([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) → ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
18 df-clab 2714 . . . . . . . 8 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ [𝑧 / 𝑥](𝑥𝐴𝜑))
19 sban 2082 . . . . . . . 8 ([𝑧 / 𝑥](𝑥𝐴𝜑) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
2018, 19bitri 274 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
21 df-rab 3404 . . . . . . . . 9 {𝑥 ∈ {𝑧} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)}
2221eleq2i 2828 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)})
23 df-clab 2714 . . . . . . . 8 (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ {𝑧} ∧ 𝜑)} ↔ [𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑))
24 sban 2082 . . . . . . . 8 ([𝑧 / 𝑥](𝑥 ∈ {𝑧} ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2522, 23, 243bitri 296 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑} ↔ ([𝑧 / 𝑥]𝑥 ∈ {𝑧} ∧ [𝑧 / 𝑥]𝜑))
2617, 20, 253imtr4i 291 . . . . . 6 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → 𝑧 ∈ {𝑥 ∈ {𝑧} ∣ 𝜑})
2726ne0d 4282 . . . . 5 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → {𝑥 ∈ {𝑧} ∣ 𝜑} ≠ ∅)
28 rabn0 4332 . . . . 5 ({𝑥 ∈ {𝑧} ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ {𝑧}𝜑)
2927, 28sylib 217 . . . 4 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑥 ∈ {𝑧}𝜑)
30 vsnex 5374 . . . . 5 {𝑧} ∈ V
31 sseq1 3957 . . . . . 6 (𝑦 = {𝑧} → (𝑦𝐴 ↔ {𝑧} ⊆ 𝐴))
32 rexeq 3306 . . . . . 6 (𝑦 = {𝑧} → (∃𝑥𝑦 𝜑 ↔ ∃𝑥 ∈ {𝑧}𝜑))
3331, 32anbi12d 631 . . . . 5 (𝑦 = {𝑧} → ((𝑦𝐴 ∧ ∃𝑥𝑦 𝜑) ↔ ({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑)))
3430, 33spcev 3554 . . . 4 (({𝑧} ⊆ 𝐴 ∧ ∃𝑥 ∈ {𝑧}𝜑) → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
3511, 29, 34syl2anc 584 . . 3 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
3635exlimiv 1932 . 2 (∃𝑧 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
375, 36sylbi 216 1 (∃𝑥𝐴 𝜑 → ∃𝑦(𝑦𝐴 ∧ ∃𝑥𝑦 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wex 1780  [wsb 2066  wcel 2105  {cab 2713  wne 2940  wrex 3070  {crab 3403  wss 3898  c0 4269  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-sn 4574  df-pr 4576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator