![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsss | Structured version Visualization version GIF version |
Description: If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclsfv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
ntrclsfv.t | ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrclsss | ⊢ (𝜑 → ((𝐼‘𝑆) ⊆ (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
2 | ntrcls.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
4 | ntrclsfv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
5 | 1, 2, 3, 4 | ntrclsfv 43324 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
6 | ntrclsfv.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) | |
7 | 1, 2, 3, 6 | ntrclsfv 43324 | . . 3 ⊢ (𝜑 → (𝐼‘𝑇) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇)))) |
8 | 5, 7 | sseq12d 4008 | . 2 ⊢ (𝜑 → ((𝐼‘𝑆) ⊆ (𝐼‘𝑇) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇))))) |
9 | 1, 2, 3 | ntrclskex 43319 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
10 | 9 | ancli 548 | . . 3 ⊢ (𝜑 → (𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
11 | elmapi 8840 | . . . . . . 7 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
13 | 2, 3 | ntrclsrcomplex 43300 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∖ 𝑇) ∈ 𝒫 𝐵) |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐵 ∖ 𝑇) ∈ 𝒫 𝐵) |
15 | 12, 14 | ffvelcdmd 7078 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐾‘(𝐵 ∖ 𝑇)) ∈ 𝒫 𝐵) |
16 | 15 | elpwid 4604 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐾‘(𝐵 ∖ 𝑇)) ⊆ 𝐵) |
17 | 2, 3 | ntrclsrcomplex 43300 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
19 | 12, 18 | ffvelcdmd 7078 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐾‘(𝐵 ∖ 𝑆)) ∈ 𝒫 𝐵) |
20 | 19 | elpwid 4604 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵) |
21 | 16, 20 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → ((𝐾‘(𝐵 ∖ 𝑇)) ⊆ 𝐵 ∧ (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵)) |
22 | sscon34b 4287 | . . 3 ⊢ (((𝐾‘(𝐵 ∖ 𝑇)) ⊆ 𝐵 ∧ (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵) → ((𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇))))) | |
23 | 10, 21, 22 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇))))) |
24 | 8, 23 | bitr4d 282 | 1 ⊢ (𝜑 → ((𝐼‘𝑆) ⊆ (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∖ cdif 3938 ⊆ wss 3941 𝒫 cpw 4595 class class class wbr 5139 ↦ cmpt 5222 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ↑m cmap 8817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-map 8819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |