Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsss Structured version   Visualization version   GIF version

Theorem ntrclsss 43116
Description: If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (π‘˜ ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 βˆ– (π‘˜β€˜(𝑖 βˆ– 𝑗))))))
ntrcls.d 𝐷 = (π‘‚β€˜π΅)
ntrcls.r (πœ‘ β†’ 𝐼𝐷𝐾)
ntrclsfv.s (πœ‘ β†’ 𝑆 ∈ 𝒫 𝐡)
ntrclsfv.t (πœ‘ β†’ 𝑇 ∈ 𝒫 𝐡)
Assertion
Ref Expression
ntrclsss (πœ‘ β†’ ((πΌβ€˜π‘†) βŠ† (πΌβ€˜π‘‡) ↔ (πΎβ€˜(𝐡 βˆ– 𝑇)) βŠ† (πΎβ€˜(𝐡 βˆ– 𝑆))))
Distinct variable groups:   𝐡,𝑖,𝑗,π‘˜   𝑗,𝐾,π‘˜   𝑆,𝑗   𝑇,𝑗   πœ‘,𝑖,𝑗,π‘˜
Allowed substitution hints:   𝐷(𝑖,𝑗,π‘˜)   𝑆(𝑖,π‘˜)   𝑇(𝑖,π‘˜)   𝐼(𝑖,𝑗,π‘˜)   𝐾(𝑖)   𝑂(𝑖,𝑗,π‘˜)

Proof of Theorem ntrclsss
StepHypRef Expression
1 ntrcls.o . . . 4 𝑂 = (𝑖 ∈ V ↦ (π‘˜ ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 βˆ– (π‘˜β€˜(𝑖 βˆ– 𝑗))))))
2 ntrcls.d . . . 4 𝐷 = (π‘‚β€˜π΅)
3 ntrcls.r . . . 4 (πœ‘ β†’ 𝐼𝐷𝐾)
4 ntrclsfv.s . . . 4 (πœ‘ β†’ 𝑆 ∈ 𝒫 𝐡)
51, 2, 3, 4ntrclsfv 43112 . . 3 (πœ‘ β†’ (πΌβ€˜π‘†) = (𝐡 βˆ– (πΎβ€˜(𝐡 βˆ– 𝑆))))
6 ntrclsfv.t . . . 4 (πœ‘ β†’ 𝑇 ∈ 𝒫 𝐡)
71, 2, 3, 6ntrclsfv 43112 . . 3 (πœ‘ β†’ (πΌβ€˜π‘‡) = (𝐡 βˆ– (πΎβ€˜(𝐡 βˆ– 𝑇))))
85, 7sseq12d 4014 . 2 (πœ‘ β†’ ((πΌβ€˜π‘†) βŠ† (πΌβ€˜π‘‡) ↔ (𝐡 βˆ– (πΎβ€˜(𝐡 βˆ– 𝑆))) βŠ† (𝐡 βˆ– (πΎβ€˜(𝐡 βˆ– 𝑇)))))
91, 2, 3ntrclskex 43107 . . . 4 (πœ‘ β†’ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡))
109ancli 547 . . 3 (πœ‘ β†’ (πœ‘ ∧ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡)))
11 elmapi 8845 . . . . . . 7 (𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡) β†’ 𝐾:𝒫 π΅βŸΆπ’« 𝐡)
1211adantl 480 . . . . . 6 ((πœ‘ ∧ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡)) β†’ 𝐾:𝒫 π΅βŸΆπ’« 𝐡)
132, 3ntrclsrcomplex 43088 . . . . . . 7 (πœ‘ β†’ (𝐡 βˆ– 𝑇) ∈ 𝒫 𝐡)
1413adantr 479 . . . . . 6 ((πœ‘ ∧ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡)) β†’ (𝐡 βˆ– 𝑇) ∈ 𝒫 𝐡)
1512, 14ffvelcdmd 7086 . . . . 5 ((πœ‘ ∧ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡)) β†’ (πΎβ€˜(𝐡 βˆ– 𝑇)) ∈ 𝒫 𝐡)
1615elpwid 4610 . . . 4 ((πœ‘ ∧ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡)) β†’ (πΎβ€˜(𝐡 βˆ– 𝑇)) βŠ† 𝐡)
172, 3ntrclsrcomplex 43088 . . . . . . 7 (πœ‘ β†’ (𝐡 βˆ– 𝑆) ∈ 𝒫 𝐡)
1817adantr 479 . . . . . 6 ((πœ‘ ∧ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡)) β†’ (𝐡 βˆ– 𝑆) ∈ 𝒫 𝐡)
1912, 18ffvelcdmd 7086 . . . . 5 ((πœ‘ ∧ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡)) β†’ (πΎβ€˜(𝐡 βˆ– 𝑆)) ∈ 𝒫 𝐡)
2019elpwid 4610 . . . 4 ((πœ‘ ∧ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡)) β†’ (πΎβ€˜(𝐡 βˆ– 𝑆)) βŠ† 𝐡)
2116, 20jca 510 . . 3 ((πœ‘ ∧ 𝐾 ∈ (𝒫 𝐡 ↑m 𝒫 𝐡)) β†’ ((πΎβ€˜(𝐡 βˆ– 𝑇)) βŠ† 𝐡 ∧ (πΎβ€˜(𝐡 βˆ– 𝑆)) βŠ† 𝐡))
22 sscon34b 4293 . . 3 (((πΎβ€˜(𝐡 βˆ– 𝑇)) βŠ† 𝐡 ∧ (πΎβ€˜(𝐡 βˆ– 𝑆)) βŠ† 𝐡) β†’ ((πΎβ€˜(𝐡 βˆ– 𝑇)) βŠ† (πΎβ€˜(𝐡 βˆ– 𝑆)) ↔ (𝐡 βˆ– (πΎβ€˜(𝐡 βˆ– 𝑆))) βŠ† (𝐡 βˆ– (πΎβ€˜(𝐡 βˆ– 𝑇)))))
2310, 21, 223syl 18 . 2 (πœ‘ β†’ ((πΎβ€˜(𝐡 βˆ– 𝑇)) βŠ† (πΎβ€˜(𝐡 βˆ– 𝑆)) ↔ (𝐡 βˆ– (πΎβ€˜(𝐡 βˆ– 𝑆))) βŠ† (𝐡 βˆ– (πΎβ€˜(𝐡 βˆ– 𝑇)))))
248, 23bitr4d 281 1 (πœ‘ β†’ ((πΌβ€˜π‘†) βŠ† (πΌβ€˜π‘‡) ↔ (πΎβ€˜(𝐡 βˆ– 𝑇)) βŠ† (πΎβ€˜(𝐡 βˆ– 𝑆))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  Vcvv 3472   βˆ– cdif 3944   βŠ† wss 3947  π’« cpw 4601   class class class wbr 5147   ↦ cmpt 5230  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ↑m cmap 8822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator