Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsss Structured version   Visualization version   GIF version

Theorem ntrclsss 38885
Description: If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclsfv.s (𝜑𝑆 ∈ 𝒫 𝐵)
ntrclsfv.t (𝜑𝑇 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclsss (𝜑 → ((𝐼𝑆) ⊆ (𝐼𝑇) ↔ (𝐾‘(𝐵𝑇)) ⊆ (𝐾‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝑇,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝑇(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsss
StepHypRef Expression
1 ntrcls.o . . . 4 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . 4 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . 4 (𝜑𝐼𝐷𝐾)
4 ntrclsfv.s . . . 4 (𝜑𝑆 ∈ 𝒫 𝐵)
51, 2, 3, 4ntrclsfv 38881 . . 3 (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
6 ntrclsfv.t . . . 4 (𝜑𝑇 ∈ 𝒫 𝐵)
71, 2, 3, 6ntrclsfv 38881 . . 3 (𝜑 → (𝐼𝑇) = (𝐵 ∖ (𝐾‘(𝐵𝑇))))
85, 7sseq12d 3783 . 2 (𝜑 → ((𝐼𝑆) ⊆ (𝐼𝑇) ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵𝑇)))))
91, 2, 3ntrclskex 38876 . . . 4 (𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
109ancli 538 . . 3 (𝜑 → (𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)))
11 elmapi 8035 . . . . . . 7 (𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
1211adantl 467 . . . . . 6 ((𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
132, 3ntrclsrcomplex 38857 . . . . . . 7 (𝜑 → (𝐵𝑇) ∈ 𝒫 𝐵)
1413adantr 466 . . . . . 6 ((𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → (𝐵𝑇) ∈ 𝒫 𝐵)
1512, 14ffvelrnd 6505 . . . . 5 ((𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → (𝐾‘(𝐵𝑇)) ∈ 𝒫 𝐵)
1615elpwid 4310 . . . 4 ((𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → (𝐾‘(𝐵𝑇)) ⊆ 𝐵)
172, 3ntrclsrcomplex 38857 . . . . . . 7 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
1817adantr 466 . . . . . 6 ((𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → (𝐵𝑆) ∈ 𝒫 𝐵)
1912, 18ffvelrnd 6505 . . . . 5 ((𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → (𝐾‘(𝐵𝑆)) ∈ 𝒫 𝐵)
2019elpwid 4310 . . . 4 ((𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → (𝐾‘(𝐵𝑆)) ⊆ 𝐵)
2116, 20jca 501 . . 3 ((𝜑𝐾 ∈ (𝒫 𝐵𝑚 𝒫 𝐵)) → ((𝐾‘(𝐵𝑇)) ⊆ 𝐵 ∧ (𝐾‘(𝐵𝑆)) ⊆ 𝐵))
22 sscon34b 38841 . . 3 (((𝐾‘(𝐵𝑇)) ⊆ 𝐵 ∧ (𝐾‘(𝐵𝑆)) ⊆ 𝐵) → ((𝐾‘(𝐵𝑇)) ⊆ (𝐾‘(𝐵𝑆)) ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵𝑇)))))
2310, 21, 223syl 18 . 2 (𝜑 → ((𝐾‘(𝐵𝑇)) ⊆ (𝐾‘(𝐵𝑆)) ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵𝑇)))))
248, 23bitr4d 271 1 (𝜑 → ((𝐼𝑆) ⊆ (𝐼𝑇) ↔ (𝐾‘(𝐵𝑇)) ⊆ (𝐾‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  cdif 3720  wss 3723  𝒫 cpw 4298   class class class wbr 4787  cmpt 4864  wf 6026  cfv 6030  (class class class)co 6796  𝑚 cmap 8013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-map 8015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator