| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsss | Structured version Visualization version GIF version | ||
| Description: If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| ntrclsfv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| ntrclsfv.t | ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| ntrclsss | ⊢ (𝜑 → ((𝐼‘𝑆) ⊆ (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 2 | ntrcls.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 4 | ntrclsfv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 5 | 1, 2, 3, 4 | ntrclsfv 44055 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 6 | ntrclsfv.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) | |
| 7 | 1, 2, 3, 6 | ntrclsfv 44055 | . . 3 ⊢ (𝜑 → (𝐼‘𝑇) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇)))) |
| 8 | 5, 7 | sseq12d 3983 | . 2 ⊢ (𝜑 → ((𝐼‘𝑆) ⊆ (𝐼‘𝑇) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇))))) |
| 9 | 1, 2, 3 | ntrclskex 44050 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 10 | 9 | ancli 548 | . . 3 ⊢ (𝜑 → (𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| 11 | elmapi 8825 | . . . . . . 7 ⊢ (𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → 𝐾:𝒫 𝐵⟶𝒫 𝐵) |
| 13 | 2, 3 | ntrclsrcomplex 44031 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∖ 𝑇) ∈ 𝒫 𝐵) |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐵 ∖ 𝑇) ∈ 𝒫 𝐵) |
| 15 | 12, 14 | ffvelcdmd 7060 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐾‘(𝐵 ∖ 𝑇)) ∈ 𝒫 𝐵) |
| 16 | 15 | elpwid 4575 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐾‘(𝐵 ∖ 𝑇)) ⊆ 𝐵) |
| 17 | 2, 3 | ntrclsrcomplex 44031 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| 19 | 12, 18 | ffvelcdmd 7060 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐾‘(𝐵 ∖ 𝑆)) ∈ 𝒫 𝐵) |
| 20 | 19 | elpwid 4575 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵) |
| 21 | 16, 20 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) → ((𝐾‘(𝐵 ∖ 𝑇)) ⊆ 𝐵 ∧ (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵)) |
| 22 | sscon34b 4270 | . . 3 ⊢ (((𝐾‘(𝐵 ∖ 𝑇)) ⊆ 𝐵 ∧ (𝐾‘(𝐵 ∖ 𝑆)) ⊆ 𝐵) → ((𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇))))) | |
| 23 | 10, 21, 22 | 3syl 18 | . 2 ⊢ (𝜑 → ((𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)) ↔ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑇))))) |
| 24 | 8, 23 | bitr4d 282 | 1 ⊢ (𝜑 → ((𝐼‘𝑆) ⊆ (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |