Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsss Structured version   Visualization version   GIF version

Theorem ntrclsss 44056
Description: If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclsfv.s (𝜑𝑆 ∈ 𝒫 𝐵)
ntrclsfv.t (𝜑𝑇 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclsss (𝜑 → ((𝐼𝑆) ⊆ (𝐼𝑇) ↔ (𝐾‘(𝐵𝑇)) ⊆ (𝐾‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝑇,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝑇(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsss
StepHypRef Expression
1 ntrcls.o . . . 4 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . 4 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . 4 (𝜑𝐼𝐷𝐾)
4 ntrclsfv.s . . . 4 (𝜑𝑆 ∈ 𝒫 𝐵)
51, 2, 3, 4ntrclsfv 44052 . . 3 (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
6 ntrclsfv.t . . . 4 (𝜑𝑇 ∈ 𝒫 𝐵)
71, 2, 3, 6ntrclsfv 44052 . . 3 (𝜑 → (𝐼𝑇) = (𝐵 ∖ (𝐾‘(𝐵𝑇))))
85, 7sseq12d 3969 . 2 (𝜑 → ((𝐼𝑆) ⊆ (𝐼𝑇) ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵𝑇)))))
91, 2, 3ntrclskex 44047 . . . 4 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
109ancli 548 . . 3 (𝜑 → (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵)))
11 elmapi 8776 . . . . . . 7 (𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
1211adantl 481 . . . . . 6 ((𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵)) → 𝐾:𝒫 𝐵⟶𝒫 𝐵)
132, 3ntrclsrcomplex 44028 . . . . . . 7 (𝜑 → (𝐵𝑇) ∈ 𝒫 𝐵)
1413adantr 480 . . . . . 6 ((𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐵𝑇) ∈ 𝒫 𝐵)
1512, 14ffvelcdmd 7019 . . . . 5 ((𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐾‘(𝐵𝑇)) ∈ 𝒫 𝐵)
1615elpwid 4560 . . . 4 ((𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐾‘(𝐵𝑇)) ⊆ 𝐵)
172, 3ntrclsrcomplex 44028 . . . . . . 7 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
1817adantr 480 . . . . . 6 ((𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐵𝑆) ∈ 𝒫 𝐵)
1912, 18ffvelcdmd 7019 . . . . 5 ((𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐾‘(𝐵𝑆)) ∈ 𝒫 𝐵)
2019elpwid 4560 . . . 4 ((𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (𝐾‘(𝐵𝑆)) ⊆ 𝐵)
2116, 20jca 511 . . 3 ((𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵)) → ((𝐾‘(𝐵𝑇)) ⊆ 𝐵 ∧ (𝐾‘(𝐵𝑆)) ⊆ 𝐵))
22 sscon34b 4255 . . 3 (((𝐾‘(𝐵𝑇)) ⊆ 𝐵 ∧ (𝐾‘(𝐵𝑆)) ⊆ 𝐵) → ((𝐾‘(𝐵𝑇)) ⊆ (𝐾‘(𝐵𝑆)) ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵𝑇)))))
2310, 21, 223syl 18 . 2 (𝜑 → ((𝐾‘(𝐵𝑇)) ⊆ (𝐾‘(𝐵𝑆)) ↔ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ⊆ (𝐵 ∖ (𝐾‘(𝐵𝑇)))))
248, 23bitr4d 282 1 (𝜑 → ((𝐼𝑆) ⊆ (𝐼𝑇) ↔ (𝐾‘(𝐵𝑇)) ⊆ (𝐾‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  wss 3903  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator