Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsk2 Structured version   Visualization version   GIF version

Theorem ntrclsk2 40416
Description: An interior function is contracting if and only if the closure function is expansive. (Contributed by RP, 9-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsk2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐾𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑠   𝑗,𝐼,𝑘,𝑠   𝜑,𝑖,𝑗,𝑘,𝑠
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘,𝑠)   𝐼(𝑖)   𝐾(𝑖,𝑗,𝑘,𝑠)   𝑂(𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclsk2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6669 . . . 4 (𝑠 = 𝑡 → (𝐼𝑠) = (𝐼𝑡))
2 id 22 . . . 4 (𝑠 = 𝑡𝑠 = 𝑡)
31, 2sseq12d 3999 . . 3 (𝑠 = 𝑡 → ((𝐼𝑠) ⊆ 𝑠 ↔ (𝐼𝑡) ⊆ 𝑡))
43cbvralvw 3449 . 2 (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐼𝑡) ⊆ 𝑡)
5 ntrcls.d . . . . 5 𝐷 = (𝑂𝐵)
6 ntrcls.r . . . . 5 (𝜑𝐼𝐷𝐾)
75, 6ntrclsrcomplex 40383 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
87adantr 483 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
95, 6ntrclsrcomplex 40383 . . . . 5 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
109adantr 483 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
11 difeq2 4092 . . . . . 6 (𝑠 = (𝐵𝑡) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
1211eqeq2d 2832 . . . . 5 (𝑠 = (𝐵𝑡) → (𝑡 = (𝐵𝑠) ↔ 𝑡 = (𝐵 ∖ (𝐵𝑡))))
1312adantl 484 . . . 4 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝑡 = (𝐵𝑠) ↔ 𝑡 = (𝐵 ∖ (𝐵𝑡))))
14 elpwi 4547 . . . . . . 7 (𝑡 ∈ 𝒫 𝐵𝑡𝐵)
15 dfss4 4234 . . . . . . 7 (𝑡𝐵 ↔ (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1614, 15sylib 220 . . . . . 6 (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1716adantl 484 . . . . 5 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1817eqcomd 2827 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵) → 𝑡 = (𝐵 ∖ (𝐵𝑡)))
1910, 13, 18rspcedvd 3625 . . 3 ((𝜑𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠))
20 fveq2 6669 . . . . . 6 (𝑡 = (𝐵𝑠) → (𝐼𝑡) = (𝐼‘(𝐵𝑠)))
21 id 22 . . . . . 6 (𝑡 = (𝐵𝑠) → 𝑡 = (𝐵𝑠))
2220, 21sseq12d 3999 . . . . 5 (𝑡 = (𝐵𝑠) → ((𝐼𝑡) ⊆ 𝑡 ↔ (𝐼‘(𝐵𝑠)) ⊆ (𝐵𝑠)))
23223ad2ant3 1131 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐼𝑡) ⊆ 𝑡 ↔ (𝐼‘(𝐵𝑠)) ⊆ (𝐵𝑠)))
24 ntrcls.o . . . . . . . . . . . 12 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2524, 5, 6ntrclsiex 40401 . . . . . . . . . . 11 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
26 elmapi 8427 . . . . . . . . . . 11 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2725, 26syl 17 . . . . . . . . . 10 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
28273ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
2973ad2ant1 1129 . . . . . . . . 9 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝐵𝑠) ∈ 𝒫 𝐵)
3028, 29ffvelrnd 6851 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝐼‘(𝐵𝑠)) ∈ 𝒫 𝐵)
3130elpwid 4549 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝐼‘(𝐵𝑠)) ⊆ 𝐵)
32 difssd 4108 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝐵𝑠) ⊆ 𝐵)
33 sscon34b 40367 . . . . . . 7 (((𝐼‘(𝐵𝑠)) ⊆ 𝐵 ∧ (𝐵𝑠) ⊆ 𝐵) → ((𝐼‘(𝐵𝑠)) ⊆ (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑠)) ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
3431, 32, 33syl2anc 586 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐼‘(𝐵𝑠)) ⊆ (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑠)) ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
35 simp2 1133 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → 𝑠 ∈ 𝒫 𝐵)
36 elpwi 4547 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝐵𝑠𝐵)
37 dfss4 4234 . . . . . . . . 9 (𝑠𝐵 ↔ (𝐵 ∖ (𝐵𝑠)) = 𝑠)
3836, 37sylib 220 . . . . . . . 8 (𝑠 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑠)) = 𝑠)
3938sseq1d 3997 . . . . . . 7 (𝑠 ∈ 𝒫 𝐵 → ((𝐵 ∖ (𝐵𝑠)) ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑠))) ↔ 𝑠 ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
4035, 39syl 17 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐵 ∖ (𝐵𝑠)) ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑠))) ↔ 𝑠 ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
4134, 40bitrd 281 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐼‘(𝐵𝑠)) ⊆ (𝐵𝑠) ↔ 𝑠 ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
425, 6ntrclsbex 40382 . . . . . . . 8 (𝜑𝐵 ∈ V)
43423ad2ant1 1129 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → 𝐵 ∈ V)
44253ad2ant1 1129 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
45 eqid 2821 . . . . . . 7 (𝐷𝐼) = (𝐷𝐼)
46 eqid 2821 . . . . . . 7 ((𝐷𝐼)‘𝑠) = ((𝐷𝐼)‘𝑠)
4724, 5, 43, 44, 45, 35, 46dssmapfv3d 40363 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
4847sseq2d 3998 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑠 ⊆ ((𝐷𝐼)‘𝑠) ↔ 𝑠 ⊆ (𝐵 ∖ (𝐼‘(𝐵𝑠)))))
4924, 5, 6ntrclsfv1 40403 . . . . . . . 8 (𝜑 → (𝐷𝐼) = 𝐾)
5049fveq1d 6671 . . . . . . 7 (𝜑 → ((𝐷𝐼)‘𝑠) = (𝐾𝑠))
5150sseq2d 3998 . . . . . 6 (𝜑 → (𝑠 ⊆ ((𝐷𝐼)‘𝑠) ↔ 𝑠 ⊆ (𝐾𝑠)))
52513ad2ant1 1129 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑠 ⊆ ((𝐷𝐼)‘𝑠) ↔ 𝑠 ⊆ (𝐾𝑠)))
5341, 48, 523bitr2d 309 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐼‘(𝐵𝑠)) ⊆ (𝐵𝑠) ↔ 𝑠 ⊆ (𝐾𝑠)))
5423, 53bitrd 281 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → ((𝐼𝑡) ⊆ 𝑡𝑠 ⊆ (𝐾𝑠)))
558, 19, 54ralxfrd2 5312 . 2 (𝜑 → (∀𝑡 ∈ 𝒫 𝐵(𝐼𝑡) ⊆ 𝑡 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐾𝑠)))
564, 55syl5bb 285 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐾𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  wss 3935  𝒫 cpw 4538   class class class wbr 5065  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  m cmap 8405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-map 8407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator