| Step | Hyp | Ref
| Expression |
| 1 | | sseq1 3991 |
. . . . 5
⊢ (𝑠 = 𝑏 → (𝑠 ⊆ 𝑡 ↔ 𝑏 ⊆ 𝑡)) |
| 2 | | fveq2 6887 |
. . . . . 6
⊢ (𝑠 = 𝑏 → (𝐼‘𝑠) = (𝐼‘𝑏)) |
| 3 | 2 | sseq1d 3997 |
. . . . 5
⊢ (𝑠 = 𝑏 → ((𝐼‘𝑠) ⊆ (𝐼‘𝑡) ↔ (𝐼‘𝑏) ⊆ (𝐼‘𝑡))) |
| 4 | 1, 3 | imbi12d 344 |
. . . 4
⊢ (𝑠 = 𝑏 → ((𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ (𝑏 ⊆ 𝑡 → (𝐼‘𝑏) ⊆ (𝐼‘𝑡)))) |
| 5 | | sseq2 3992 |
. . . . 5
⊢ (𝑡 = 𝑎 → (𝑏 ⊆ 𝑡 ↔ 𝑏 ⊆ 𝑎)) |
| 6 | | fveq2 6887 |
. . . . . 6
⊢ (𝑡 = 𝑎 → (𝐼‘𝑡) = (𝐼‘𝑎)) |
| 7 | 6 | sseq2d 3998 |
. . . . 5
⊢ (𝑡 = 𝑎 → ((𝐼‘𝑏) ⊆ (𝐼‘𝑡) ↔ (𝐼‘𝑏) ⊆ (𝐼‘𝑎))) |
| 8 | 5, 7 | imbi12d 344 |
. . . 4
⊢ (𝑡 = 𝑎 → ((𝑏 ⊆ 𝑡 → (𝐼‘𝑏) ⊆ (𝐼‘𝑡)) ↔ (𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)))) |
| 9 | 4, 8 | cbvral2vw 3228 |
. . 3
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑏 ∈ 𝒫 𝐵∀𝑎 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎))) |
| 10 | | ralcom 3274 |
. . 3
⊢
(∀𝑏 ∈
𝒫 𝐵∀𝑎 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ ∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎))) |
| 11 | 9, 10 | bitri 275 |
. 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎))) |
| 12 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝜑) |
| 13 | | ntrcls.d |
. . . . . 6
⊢ 𝐷 = (𝑂‘𝐵) |
| 14 | | ntrcls.r |
. . . . . 6
⊢ (𝜑 → 𝐼𝐷𝐾) |
| 15 | 13, 14 | ntrclsbex 43992 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
| 16 | 12, 15 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐵 ∈ V) |
| 17 | | difssd 4119 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ⊆ 𝐵) |
| 18 | 16, 17 | sselpwd 5310 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
| 19 | | elpwi 4589 |
. . . 4
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵) |
| 20 | | simpl 482 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → 𝐵 ∈ V) |
| 21 | | difssd 4119 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → (𝐵 ∖ 𝑎) ⊆ 𝐵) |
| 22 | 20, 21 | sselpwd 5310 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → (𝐵 ∖ 𝑎) ∈ 𝒫 𝐵) |
| 23 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → 𝑠 = (𝐵 ∖ 𝑎)) |
| 24 | 23 | difeq2d 4108 |
. . . . . . 7
⊢ (((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑎))) |
| 25 | 24 | eqeq2d 2745 |
. . . . . 6
⊢ (((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → (𝑎 = (𝐵 ∖ 𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)))) |
| 26 | | eqcom 2741 |
. . . . . 6
⊢ (𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)) ↔ (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
| 27 | 25, 26 | bitrdi 287 |
. . . . 5
⊢ (((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → (𝑎 = (𝐵 ∖ 𝑠) ↔ (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎)) |
| 28 | | dfss4 4251 |
. . . . . . 7
⊢ (𝑎 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
| 29 | 28 | biimpi 216 |
. . . . . 6
⊢ (𝑎 ⊆ 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
| 30 | 29 | adantl 481 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
| 31 | 22, 27, 30 | rspcedvd 3608 |
. . . 4
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵 ∖ 𝑠)) |
| 32 | 15, 19, 31 | syl2an 596 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵 ∖ 𝑠)) |
| 33 | | simpl1 1191 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝜑) |
| 34 | 33, 15 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V) |
| 35 | | difssd 4119 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ⊆ 𝐵) |
| 36 | 34, 35 | sselpwd 5310 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
| 37 | | elpwi 4589 |
. . . . . 6
⊢ (𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵) |
| 38 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → 𝐵 ∈ V) |
| 39 | | difssd 4119 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → (𝐵 ∖ 𝑏) ⊆ 𝐵) |
| 40 | 38, 39 | sselpwd 5310 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → (𝐵 ∖ 𝑏) ∈ 𝒫 𝐵) |
| 41 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → 𝑡 = (𝐵 ∖ 𝑏)) |
| 42 | 41 | difeq2d 4108 |
. . . . . . . . 9
⊢ (((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → (𝐵 ∖ 𝑡) = (𝐵 ∖ (𝐵 ∖ 𝑏))) |
| 43 | 42 | eqeq2d 2745 |
. . . . . . . 8
⊢ (((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → (𝑏 = (𝐵 ∖ 𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)))) |
| 44 | | eqcom 2741 |
. . . . . . . 8
⊢ (𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)) ↔ (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
| 45 | 43, 44 | bitrdi 287 |
. . . . . . 7
⊢ (((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → (𝑏 = (𝐵 ∖ 𝑡) ↔ (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏)) |
| 46 | | dfss4 4251 |
. . . . . . . . 9
⊢ (𝑏 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
| 47 | 46 | biimpi 216 |
. . . . . . . 8
⊢ (𝑏 ⊆ 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
| 48 | 47 | adantl 481 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
| 49 | 40, 45, 48 | rspcedvd 3608 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
| 50 | 15, 37, 49 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
| 51 | 50 | 3ad2antl1 1185 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
| 52 | | simp12 1204 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑠 ∈ 𝒫 𝐵) |
| 53 | 52 | elpwid 4591 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑠 ⊆ 𝐵) |
| 54 | | simp2 1137 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑡 ∈ 𝒫 𝐵) |
| 55 | 54 | elpwid 4591 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑡 ⊆ 𝐵) |
| 56 | | sscon34b 4286 |
. . . . . . . 8
⊢ ((𝑠 ⊆ 𝐵 ∧ 𝑡 ⊆ 𝐵) → (𝑠 ⊆ 𝑡 ↔ (𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠))) |
| 57 | 53, 55, 56 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝑠 ⊆ 𝑡 ↔ (𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠))) |
| 58 | 57 | bicomd 223 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠) ↔ 𝑠 ⊆ 𝑡)) |
| 59 | | simp11 1203 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝜑) |
| 60 | | ntrcls.o |
. . . . . . . . . . . 12
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| 61 | 60, 13, 14 | ntrclsiex 44011 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 62 | 59, 61 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 63 | | elmapi 8872 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫
𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 65 | 59, 15 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝐵 ∈ V) |
| 66 | | difssd 4119 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑡) ⊆ 𝐵) |
| 67 | 65, 66 | sselpwd 5310 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
| 68 | 64, 67 | ffvelcdmd 7086 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘(𝐵 ∖ 𝑡)) ∈ 𝒫 𝐵) |
| 69 | 68 | elpwid 4591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘(𝐵 ∖ 𝑡)) ⊆ 𝐵) |
| 70 | | difssd 4119 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑠) ⊆ 𝐵) |
| 71 | 65, 70 | sselpwd 5310 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
| 72 | 64, 71 | ffvelcdmd 7086 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘(𝐵 ∖ 𝑠)) ∈ 𝒫 𝐵) |
| 73 | 72 | elpwid 4591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵) |
| 74 | | sscon34b 4286 |
. . . . . . 7
⊢ (((𝐼‘(𝐵 ∖ 𝑡)) ⊆ 𝐵 ∧ (𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵) → ((𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡))))) |
| 75 | 69, 73, 74 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡))))) |
| 76 | 58, 75 | imbi12d 344 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (((𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠) → (𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠))) ↔ (𝑠 ⊆ 𝑡 → (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))))) |
| 77 | | simp3 1138 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑏 = (𝐵 ∖ 𝑡)) |
| 78 | | simp13 1205 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑎 = (𝐵 ∖ 𝑠)) |
| 79 | 77, 78 | sseq12d 3999 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝑏 ⊆ 𝑎 ↔ (𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠))) |
| 80 | 77 | fveq2d 6891 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘𝑏) = (𝐼‘(𝐵 ∖ 𝑡))) |
| 81 | 78 | fveq2d 6891 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘𝑎) = (𝐼‘(𝐵 ∖ 𝑠))) |
| 82 | 80, 81 | sseq12d 3999 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐼‘𝑏) ⊆ (𝐼‘𝑎) ↔ (𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠)))) |
| 83 | 79, 82 | imbi12d 344 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ ((𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠) → (𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠))))) |
| 84 | 60, 13, 14 | ntrclsfv1 44013 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
| 85 | 59, 84 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐷‘𝐼) = 𝐾) |
| 86 | 85 | fveq1d 6889 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐷‘𝐼)‘𝑠) = (𝐾‘𝑠)) |
| 87 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝐷‘𝐼) = (𝐷‘𝐼) |
| 88 | | eqid 2734 |
. . . . . . . . 9
⊢ ((𝐷‘𝐼)‘𝑠) = ((𝐷‘𝐼)‘𝑠) |
| 89 | 60, 13, 65, 62, 87, 52, 88 | dssmapfv3d 43977 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐷‘𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) |
| 90 | 86, 89 | eqtr3d 2771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐾‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) |
| 91 | 59, 14 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝐼𝐷𝐾) |
| 92 | 60, 13, 91 | ntrclsfv1 44013 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐷‘𝐼) = 𝐾) |
| 93 | 92 | fveq1d 6889 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐷‘𝐼)‘𝑡) = (𝐾‘𝑡)) |
| 94 | | eqid 2734 |
. . . . . . . . 9
⊢ ((𝐷‘𝐼)‘𝑡) = ((𝐷‘𝐼)‘𝑡) |
| 95 | 60, 13, 65, 62, 87, 54, 94 | dssmapfv3d 43977 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐷‘𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) |
| 96 | 93, 95 | eqtr3d 2771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐾‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) |
| 97 | 90, 96 | sseq12d 3999 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐾‘𝑠) ⊆ (𝐾‘𝑡) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡))))) |
| 98 | 97 | imbi2d 340 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)) ↔ (𝑠 ⊆ 𝑡 → (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))))) |
| 99 | 76, 83, 98 | 3bitr4d 311 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ (𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) |
| 100 | 36, 51, 99 | ralxfrd2 5394 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) |
| 101 | 18, 32, 100 | ralxfrd2 5394 |
. 2
⊢ (𝜑 → (∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) |
| 102 | 11, 101 | bitrid 283 |
1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) |