Step | Hyp | Ref
| Expression |
1 | | sseq1 3942 |
. . . . 5
⊢ (𝑠 = 𝑏 → (𝑠 ⊆ 𝑡 ↔ 𝑏 ⊆ 𝑡)) |
2 | | fveq2 6756 |
. . . . . 6
⊢ (𝑠 = 𝑏 → (𝐼‘𝑠) = (𝐼‘𝑏)) |
3 | 2 | sseq1d 3948 |
. . . . 5
⊢ (𝑠 = 𝑏 → ((𝐼‘𝑠) ⊆ (𝐼‘𝑡) ↔ (𝐼‘𝑏) ⊆ (𝐼‘𝑡))) |
4 | 1, 3 | imbi12d 344 |
. . . 4
⊢ (𝑠 = 𝑏 → ((𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ (𝑏 ⊆ 𝑡 → (𝐼‘𝑏) ⊆ (𝐼‘𝑡)))) |
5 | | sseq2 3943 |
. . . . 5
⊢ (𝑡 = 𝑎 → (𝑏 ⊆ 𝑡 ↔ 𝑏 ⊆ 𝑎)) |
6 | | fveq2 6756 |
. . . . . 6
⊢ (𝑡 = 𝑎 → (𝐼‘𝑡) = (𝐼‘𝑎)) |
7 | 6 | sseq2d 3949 |
. . . . 5
⊢ (𝑡 = 𝑎 → ((𝐼‘𝑏) ⊆ (𝐼‘𝑡) ↔ (𝐼‘𝑏) ⊆ (𝐼‘𝑎))) |
8 | 5, 7 | imbi12d 344 |
. . . 4
⊢ (𝑡 = 𝑎 → ((𝑏 ⊆ 𝑡 → (𝐼‘𝑏) ⊆ (𝐼‘𝑡)) ↔ (𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)))) |
9 | 4, 8 | cbvral2vw 3385 |
. . 3
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑏 ∈ 𝒫 𝐵∀𝑎 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎))) |
10 | | ralcom 3280 |
. . 3
⊢
(∀𝑏 ∈
𝒫 𝐵∀𝑎 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ ∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎))) |
11 | 9, 10 | bitri 274 |
. 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎))) |
12 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝜑) |
13 | | ntrcls.d |
. . . . . 6
⊢ 𝐷 = (𝑂‘𝐵) |
14 | | ntrcls.r |
. . . . . 6
⊢ (𝜑 → 𝐼𝐷𝐾) |
15 | 13, 14 | ntrclsbex 41533 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
16 | 12, 15 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐵 ∈ V) |
17 | | difssd 4063 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ⊆ 𝐵) |
18 | 16, 17 | sselpwd 5245 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
19 | | elpwi 4539 |
. . . 4
⊢ (𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵) |
20 | | simpl 482 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → 𝐵 ∈ V) |
21 | | difssd 4063 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → (𝐵 ∖ 𝑎) ⊆ 𝐵) |
22 | 20, 21 | sselpwd 5245 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → (𝐵 ∖ 𝑎) ∈ 𝒫 𝐵) |
23 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → 𝑠 = (𝐵 ∖ 𝑎)) |
24 | 23 | difeq2d 4053 |
. . . . . . 7
⊢ (((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑎))) |
25 | 24 | eqeq2d 2749 |
. . . . . 6
⊢ (((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → (𝑎 = (𝐵 ∖ 𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)))) |
26 | | eqcom 2745 |
. . . . . 6
⊢ (𝑎 = (𝐵 ∖ (𝐵 ∖ 𝑎)) ↔ (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
27 | 25, 26 | bitrdi 286 |
. . . . 5
⊢ (((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑎)) → (𝑎 = (𝐵 ∖ 𝑠) ↔ (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎)) |
28 | | dfss4 4189 |
. . . . . . 7
⊢ (𝑎 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
29 | 28 | biimpi 215 |
. . . . . 6
⊢ (𝑎 ⊆ 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
30 | 29 | adantl 481 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → (𝐵 ∖ (𝐵 ∖ 𝑎)) = 𝑎) |
31 | 22, 27, 30 | rspcedvd 3555 |
. . . 4
⊢ ((𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵 ∖ 𝑠)) |
32 | 15, 19, 31 | syl2an 595 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵 ∖ 𝑠)) |
33 | | simpl1 1189 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝜑) |
34 | 33, 15 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V) |
35 | | difssd 4063 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ⊆ 𝐵) |
36 | 34, 35 | sselpwd 5245 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
37 | | elpwi 4539 |
. . . . . 6
⊢ (𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵) |
38 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → 𝐵 ∈ V) |
39 | | difssd 4063 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → (𝐵 ∖ 𝑏) ⊆ 𝐵) |
40 | 38, 39 | sselpwd 5245 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → (𝐵 ∖ 𝑏) ∈ 𝒫 𝐵) |
41 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → 𝑡 = (𝐵 ∖ 𝑏)) |
42 | 41 | difeq2d 4053 |
. . . . . . . . 9
⊢ (((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → (𝐵 ∖ 𝑡) = (𝐵 ∖ (𝐵 ∖ 𝑏))) |
43 | 42 | eqeq2d 2749 |
. . . . . . . 8
⊢ (((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → (𝑏 = (𝐵 ∖ 𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)))) |
44 | | eqcom 2745 |
. . . . . . . 8
⊢ (𝑏 = (𝐵 ∖ (𝐵 ∖ 𝑏)) ↔ (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
45 | 43, 44 | bitrdi 286 |
. . . . . . 7
⊢ (((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) ∧ 𝑡 = (𝐵 ∖ 𝑏)) → (𝑏 = (𝐵 ∖ 𝑡) ↔ (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏)) |
46 | | dfss4 4189 |
. . . . . . . . 9
⊢ (𝑏 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
47 | 46 | biimpi 215 |
. . . . . . . 8
⊢ (𝑏 ⊆ 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
48 | 47 | adantl 481 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → (𝐵 ∖ (𝐵 ∖ 𝑏)) = 𝑏) |
49 | 40, 45, 48 | rspcedvd 3555 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
50 | 15, 37, 49 | syl2an 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
51 | 50 | 3ad2antl1 1183 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵 ∖ 𝑡)) |
52 | | simp12 1202 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑠 ∈ 𝒫 𝐵) |
53 | 52 | elpwid 4541 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑠 ⊆ 𝐵) |
54 | | simp2 1135 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑡 ∈ 𝒫 𝐵) |
55 | 54 | elpwid 4541 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑡 ⊆ 𝐵) |
56 | | sscon34b 4225 |
. . . . . . . 8
⊢ ((𝑠 ⊆ 𝐵 ∧ 𝑡 ⊆ 𝐵) → (𝑠 ⊆ 𝑡 ↔ (𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠))) |
57 | 53, 55, 56 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝑠 ⊆ 𝑡 ↔ (𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠))) |
58 | 57 | bicomd 222 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠) ↔ 𝑠 ⊆ 𝑡)) |
59 | | simp11 1201 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝜑) |
60 | | ntrcls.o |
. . . . . . . . . . . 12
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
61 | 60, 13, 14 | ntrclsiex 41552 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
62 | 59, 61 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
63 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫
𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
64 | 62, 63 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
65 | 59, 15 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝐵 ∈ V) |
66 | | difssd 4063 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑡) ⊆ 𝐵) |
67 | 65, 66 | sselpwd 5245 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
68 | 64, 67 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘(𝐵 ∖ 𝑡)) ∈ 𝒫 𝐵) |
69 | 68 | elpwid 4541 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘(𝐵 ∖ 𝑡)) ⊆ 𝐵) |
70 | | difssd 4063 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑠) ⊆ 𝐵) |
71 | 65, 70 | sselpwd 5245 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
72 | 64, 71 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘(𝐵 ∖ 𝑠)) ∈ 𝒫 𝐵) |
73 | 72 | elpwid 4541 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵) |
74 | | sscon34b 4225 |
. . . . . . 7
⊢ (((𝐼‘(𝐵 ∖ 𝑡)) ⊆ 𝐵 ∧ (𝐼‘(𝐵 ∖ 𝑠)) ⊆ 𝐵) → ((𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡))))) |
75 | 69, 73, 74 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠)) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡))))) |
76 | 58, 75 | imbi12d 344 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (((𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠) → (𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠))) ↔ (𝑠 ⊆ 𝑡 → (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))))) |
77 | | simp3 1136 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑏 = (𝐵 ∖ 𝑡)) |
78 | | simp13 1203 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝑎 = (𝐵 ∖ 𝑠)) |
79 | 77, 78 | sseq12d 3950 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝑏 ⊆ 𝑎 ↔ (𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠))) |
80 | 77 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘𝑏) = (𝐼‘(𝐵 ∖ 𝑡))) |
81 | 78 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐼‘𝑎) = (𝐼‘(𝐵 ∖ 𝑠))) |
82 | 80, 81 | sseq12d 3950 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐼‘𝑏) ⊆ (𝐼‘𝑎) ↔ (𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠)))) |
83 | 79, 82 | imbi12d 344 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ ((𝐵 ∖ 𝑡) ⊆ (𝐵 ∖ 𝑠) → (𝐼‘(𝐵 ∖ 𝑡)) ⊆ (𝐼‘(𝐵 ∖ 𝑠))))) |
84 | 60, 13, 14 | ntrclsfv1 41554 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
85 | 59, 84 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐷‘𝐼) = 𝐾) |
86 | 85 | fveq1d 6758 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐷‘𝐼)‘𝑠) = (𝐾‘𝑠)) |
87 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐷‘𝐼) = (𝐷‘𝐼) |
88 | | eqid 2738 |
. . . . . . . . 9
⊢ ((𝐷‘𝐼)‘𝑠) = ((𝐷‘𝐼)‘𝑠) |
89 | 60, 13, 65, 62, 87, 52, 88 | dssmapfv3d 41516 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐷‘𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) |
90 | 86, 89 | eqtr3d 2780 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐾‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠)))) |
91 | 59, 14 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → 𝐼𝐷𝐾) |
92 | 60, 13, 91 | ntrclsfv1 41554 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐷‘𝐼) = 𝐾) |
93 | 92 | fveq1d 6758 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐷‘𝐼)‘𝑡) = (𝐾‘𝑡)) |
94 | | eqid 2738 |
. . . . . . . . 9
⊢ ((𝐷‘𝐼)‘𝑡) = ((𝐷‘𝐼)‘𝑡) |
95 | 60, 13, 65, 62, 87, 54, 94 | dssmapfv3d 41516 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐷‘𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) |
96 | 93, 95 | eqtr3d 2780 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → (𝐾‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))) |
97 | 90, 96 | sseq12d 3950 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝐾‘𝑠) ⊆ (𝐾‘𝑡) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡))))) |
98 | 97 | imbi2d 340 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)) ↔ (𝑠 ⊆ 𝑡 → (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑠))) ⊆ (𝐵 ∖ (𝐼‘(𝐵 ∖ 𝑡)))))) |
99 | 76, 83, 98 | 3bitr4d 310 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = (𝐵 ∖ 𝑡)) → ((𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ (𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) |
100 | 36, 51, 99 | ralxfrd2 5330 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = (𝐵 ∖ 𝑠)) → (∀𝑏 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) |
101 | 18, 32, 100 | ralxfrd2 5330 |
. 2
⊢ (𝜑 → (∀𝑎 ∈ 𝒫 𝐵∀𝑏 ∈ 𝒫 𝐵(𝑏 ⊆ 𝑎 → (𝐼‘𝑏) ⊆ (𝐼‘𝑎)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) |
102 | 11, 101 | syl5bb 282 |
1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) |