MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssctr Structured version   Visualization version   GIF version

Theorem ssctr 17750
Description: The subcategory subset relation is transitive. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
ssctr ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴cat 𝐶)

Proof of Theorem ssctr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴cat 𝐵)
2 eqidd 2730 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐴 = dom dom 𝐴)
31, 2sscfn1 17742 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
4 eqidd 2730 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐵 = dom dom 𝐵)
51, 4sscfn2 17743 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
63, 5, 1ssc1 17746 . . 3 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐵)
7 simpr 484 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐵cat 𝐶)
8 eqidd 2730 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐶 = dom dom 𝐶)
97, 8sscfn2 17743 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐶 Fn (dom dom 𝐶 × dom dom 𝐶))
105, 9, 7ssc1 17746 . . 3 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐵 ⊆ dom dom 𝐶)
116, 10sstrd 3948 . 2 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐶)
123adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
131adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴cat 𝐵)
14 simprl 770 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴)
15 simprr 772 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴)
1612, 13, 14, 15ssc2 17747 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦))
175adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
187adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵cat 𝐶)
196adantr 480 . . . . . 6 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵)
2019, 14sseldd 3938 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵)
2119, 15sseldd 3938 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵)
2217, 18, 20, 21ssc2 17747 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐶𝑦))
2316, 22sstrd 3948 . . 3 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦))
2423ralrimivva 3172 . 2 ((𝐴cat 𝐵𝐵cat 𝐶) → ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦))
25 sscrel 17738 . . . . . 6 Rel ⊆cat
2625brrelex2i 5680 . . . . 5 (𝐵cat 𝐶𝐶 ∈ V)
2726adantl 481 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐶 ∈ V)
28 dmexg 7841 . . . 4 (𝐶 ∈ V → dom 𝐶 ∈ V)
29 dmexg 7841 . . . 4 (dom 𝐶 ∈ V → dom dom 𝐶 ∈ V)
3027, 28, 293syl 18 . . 3 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐶 ∈ V)
313, 9, 30isssc 17745 . 2 ((𝐴cat 𝐵𝐵cat 𝐶) → (𝐴cat 𝐶 ↔ (dom dom 𝐴 ⊆ dom dom 𝐶 ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦))))
3211, 24, 31mpbir2and 713 1 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴cat 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  Vcvv 3438  wss 3905   class class class wbr 5095   × cxp 5621  dom cdm 5623   Fn wfn 6481  (class class class)co 7353  cat cssc 17732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-ixp 8832  df-ssc 17735
This theorem is referenced by:  subsubc  17778
  Copyright terms: Public domain W3C validator