| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐴 ⊆cat 𝐵) |
| 2 | | eqidd 2736 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐴 = dom dom 𝐴) |
| 3 | 1, 2 | sscfn1 17830 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴)) |
| 4 | | eqidd 2736 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐵 = dom dom 𝐵) |
| 5 | 1, 4 | sscfn2 17831 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) |
| 6 | 3, 5, 1 | ssc1 17834 |
. . 3
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐵) |
| 7 | | simpr 484 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐵 ⊆cat 𝐶) |
| 8 | | eqidd 2736 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐶 = dom dom 𝐶) |
| 9 | 7, 8 | sscfn2 17831 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐶 Fn (dom dom 𝐶 × dom dom 𝐶)) |
| 10 | 5, 9, 7 | ssc1 17834 |
. . 3
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐵 ⊆ dom dom 𝐶) |
| 11 | 6, 10 | sstrd 3969 |
. 2
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐶) |
| 12 | 3 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴)) |
| 13 | 1 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐴 ⊆cat 𝐵) |
| 14 | | simprl 770 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴) |
| 15 | | simprr 772 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴) |
| 16 | 12, 13, 14, 15 | ssc2 17835 |
. . . 4
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦)) |
| 17 | 5 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) |
| 18 | 7 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐵 ⊆cat 𝐶) |
| 19 | 6 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵) |
| 20 | 19, 14 | sseldd 3959 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵) |
| 21 | 19, 15 | sseldd 3959 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵) |
| 22 | 17, 18, 20, 21 | ssc2 17835 |
. . . 4
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐶𝑦)) |
| 23 | 16, 22 | sstrd 3969 |
. . 3
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦)) |
| 24 | 23 | ralrimivva 3187 |
. 2
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → ∀𝑥 ∈ dom dom 𝐴∀𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦)) |
| 25 | | sscrel 17826 |
. . . . . 6
⊢ Rel
⊆cat |
| 26 | 25 | brrelex2i 5711 |
. . . . 5
⊢ (𝐵 ⊆cat 𝐶 → 𝐶 ∈ V) |
| 27 | 26 | adantl 481 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐶 ∈ V) |
| 28 | | dmexg 7897 |
. . . 4
⊢ (𝐶 ∈ V → dom 𝐶 ∈ V) |
| 29 | | dmexg 7897 |
. . . 4
⊢ (dom
𝐶 ∈ V → dom dom
𝐶 ∈
V) |
| 30 | 27, 28, 29 | 3syl 18 |
. . 3
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐶 ∈ V) |
| 31 | 3, 9, 30 | isssc 17833 |
. 2
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → (𝐴 ⊆cat 𝐶 ↔ (dom dom 𝐴 ⊆ dom dom 𝐶 ∧ ∀𝑥 ∈ dom dom 𝐴∀𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦)))) |
| 32 | 11, 24, 31 | mpbir2and 713 |
1
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐴 ⊆cat 𝐶) |