MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssctr Structured version   Visualization version   GIF version

Theorem ssctr 17873
Description: The subcategory subset relation is transitive. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
ssctr ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴cat 𝐶)

Proof of Theorem ssctr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴cat 𝐵)
2 eqidd 2736 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐴 = dom dom 𝐴)
31, 2sscfn1 17865 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
4 eqidd 2736 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐵 = dom dom 𝐵)
51, 4sscfn2 17866 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
63, 5, 1ssc1 17869 . . 3 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐵)
7 simpr 484 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐵cat 𝐶)
8 eqidd 2736 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐶 = dom dom 𝐶)
97, 8sscfn2 17866 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐶 Fn (dom dom 𝐶 × dom dom 𝐶))
105, 9, 7ssc1 17869 . . 3 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐵 ⊆ dom dom 𝐶)
116, 10sstrd 4006 . 2 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐶)
123adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
131adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴cat 𝐵)
14 simprl 771 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴)
15 simprr 773 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴)
1612, 13, 14, 15ssc2 17870 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦))
175adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
187adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵cat 𝐶)
196adantr 480 . . . . . 6 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵)
2019, 14sseldd 3996 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵)
2119, 15sseldd 3996 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵)
2217, 18, 20, 21ssc2 17870 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐶𝑦))
2316, 22sstrd 4006 . . 3 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦))
2423ralrimivva 3200 . 2 ((𝐴cat 𝐵𝐵cat 𝐶) → ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦))
25 sscrel 17861 . . . . . 6 Rel ⊆cat
2625brrelex2i 5746 . . . . 5 (𝐵cat 𝐶𝐶 ∈ V)
2726adantl 481 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐶 ∈ V)
28 dmexg 7924 . . . 4 (𝐶 ∈ V → dom 𝐶 ∈ V)
29 dmexg 7924 . . . 4 (dom 𝐶 ∈ V → dom dom 𝐶 ∈ V)
3027, 28, 293syl 18 . . 3 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐶 ∈ V)
313, 9, 30isssc 17868 . 2 ((𝐴cat 𝐵𝐵cat 𝐶) → (𝐴cat 𝐶 ↔ (dom dom 𝐴 ⊆ dom dom 𝐶 ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦))))
3211, 24, 31mpbir2and 713 1 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴cat 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wral 3059  Vcvv 3478  wss 3963   class class class wbr 5148   × cxp 5687  dom cdm 5689   Fn wfn 6558  (class class class)co 7431  cat cssc 17855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-ixp 8937  df-ssc 17858
This theorem is referenced by:  subsubc  17904
  Copyright terms: Public domain W3C validator