MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssctr Structured version   Visualization version   GIF version

Theorem ssctr 17794
Description: The subcategory subset relation is transitive. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
ssctr ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴cat 𝐶)

Proof of Theorem ssctr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴cat 𝐵)
2 eqidd 2731 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐴 = dom dom 𝐴)
31, 2sscfn1 17786 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
4 eqidd 2731 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐵 = dom dom 𝐵)
51, 4sscfn2 17787 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
63, 5, 1ssc1 17790 . . 3 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐵)
7 simpr 484 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐵cat 𝐶)
8 eqidd 2731 . . . . 5 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐶 = dom dom 𝐶)
97, 8sscfn2 17787 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐶 Fn (dom dom 𝐶 × dom dom 𝐶))
105, 9, 7ssc1 17790 . . 3 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐵 ⊆ dom dom 𝐶)
116, 10sstrd 3960 . 2 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐶)
123adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴))
131adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐴cat 𝐵)
14 simprl 770 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴)
15 simprr 772 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴)
1612, 13, 14, 15ssc2 17791 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦))
175adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵))
187adantr 480 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝐵cat 𝐶)
196adantr 480 . . . . . 6 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵)
2019, 14sseldd 3950 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵)
2119, 15sseldd 3950 . . . . 5 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵)
2217, 18, 20, 21ssc2 17791 . . . 4 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐶𝑦))
2316, 22sstrd 3960 . . 3 (((𝐴cat 𝐵𝐵cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦))
2423ralrimivva 3181 . 2 ((𝐴cat 𝐵𝐵cat 𝐶) → ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦))
25 sscrel 17782 . . . . . 6 Rel ⊆cat
2625brrelex2i 5698 . . . . 5 (𝐵cat 𝐶𝐶 ∈ V)
2726adantl 481 . . . 4 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐶 ∈ V)
28 dmexg 7880 . . . 4 (𝐶 ∈ V → dom 𝐶 ∈ V)
29 dmexg 7880 . . . 4 (dom 𝐶 ∈ V → dom dom 𝐶 ∈ V)
3027, 28, 293syl 18 . . 3 ((𝐴cat 𝐵𝐵cat 𝐶) → dom dom 𝐶 ∈ V)
313, 9, 30isssc 17789 . 2 ((𝐴cat 𝐵𝐵cat 𝐶) → (𝐴cat 𝐶 ↔ (dom dom 𝐴 ⊆ dom dom 𝐶 ∧ ∀𝑥 ∈ dom dom 𝐴𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦))))
3211, 24, 31mpbir2and 713 1 ((𝐴cat 𝐵𝐵cat 𝐶) → 𝐴cat 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  Vcvv 3450  wss 3917   class class class wbr 5110   × cxp 5639  dom cdm 5641   Fn wfn 6509  (class class class)co 7390  cat cssc 17776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-ixp 8874  df-ssc 17779
This theorem is referenced by:  subsubc  17822
  Copyright terms: Public domain W3C validator