Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐴 ⊆cat 𝐵) |
2 | | eqidd 2740 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐴 = dom dom 𝐴) |
3 | 1, 2 | sscfn1 17510 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴)) |
4 | | eqidd 2740 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐵 = dom dom 𝐵) |
5 | 1, 4 | sscfn2 17511 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) |
6 | 3, 5, 1 | ssc1 17514 |
. . 3
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐵) |
7 | | simpr 484 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐵 ⊆cat 𝐶) |
8 | | eqidd 2740 |
. . . . 5
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐶 = dom dom 𝐶) |
9 | 7, 8 | sscfn2 17511 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐶 Fn (dom dom 𝐶 × dom dom 𝐶)) |
10 | 5, 9, 7 | ssc1 17514 |
. . 3
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐵 ⊆ dom dom 𝐶) |
11 | 6, 10 | sstrd 3935 |
. 2
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐴 ⊆ dom dom 𝐶) |
12 | 3 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐴 Fn (dom dom 𝐴 × dom dom 𝐴)) |
13 | 1 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐴 ⊆cat 𝐵) |
14 | | simprl 767 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐴) |
15 | | simprr 769 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐴) |
16 | 12, 13, 14, 15 | ssc2 17515 |
. . . 4
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐵𝑦)) |
17 | 5 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐵 Fn (dom dom 𝐵 × dom dom 𝐵)) |
18 | 7 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝐵 ⊆cat 𝐶) |
19 | 6 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → dom dom 𝐴 ⊆ dom dom 𝐵) |
20 | 19, 14 | sseldd 3926 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑥 ∈ dom dom 𝐵) |
21 | 19, 15 | sseldd 3926 |
. . . . 5
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → 𝑦 ∈ dom dom 𝐵) |
22 | 17, 18, 20, 21 | ssc2 17515 |
. . . 4
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → (𝑥𝐵𝑦) ⊆ (𝑥𝐶𝑦)) |
23 | 16, 22 | sstrd 3935 |
. . 3
⊢ (((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) ∧ (𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴)) → (𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦)) |
24 | 23 | ralrimivva 3116 |
. 2
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → ∀𝑥 ∈ dom dom 𝐴∀𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦)) |
25 | | sscrel 17506 |
. . . . . 6
⊢ Rel
⊆cat |
26 | 25 | brrelex2i 5643 |
. . . . 5
⊢ (𝐵 ⊆cat 𝐶 → 𝐶 ∈ V) |
27 | 26 | adantl 481 |
. . . 4
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐶 ∈ V) |
28 | | dmexg 7737 |
. . . 4
⊢ (𝐶 ∈ V → dom 𝐶 ∈ V) |
29 | | dmexg 7737 |
. . . 4
⊢ (dom
𝐶 ∈ V → dom dom
𝐶 ∈
V) |
30 | 27, 28, 29 | 3syl 18 |
. . 3
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → dom dom 𝐶 ∈ V) |
31 | 3, 9, 30 | isssc 17513 |
. 2
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → (𝐴 ⊆cat 𝐶 ↔ (dom dom 𝐴 ⊆ dom dom 𝐶 ∧ ∀𝑥 ∈ dom dom 𝐴∀𝑦 ∈ dom dom 𝐴(𝑥𝐴𝑦) ⊆ (𝑥𝐶𝑦)))) |
32 | 11, 24, 31 | mpbir2and 709 |
1
⊢ ((𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶) → 𝐴 ⊆cat 𝐶) |