MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssc2 Structured version   Visualization version   GIF version

Theorem ssc2 17729
Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
ssc2.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
ssc2.2 (𝜑𝐻cat 𝐽)
ssc2.3 (𝜑𝑋𝑆)
ssc2.4 (𝜑𝑌𝑆)
Assertion
Ref Expression
ssc2 (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))

Proof of Theorem ssc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssc2.3 . 2 (𝜑𝑋𝑆)
2 ssc2.4 . 2 (𝜑𝑌𝑆)
3 ssc2.2 . . . 4 (𝜑𝐻cat 𝐽)
4 ssc2.1 . . . . 5 (𝜑𝐻 Fn (𝑆 × 𝑆))
5 eqidd 2732 . . . . . 6 (𝜑 → dom dom 𝐽 = dom dom 𝐽)
63, 5sscfn2 17725 . . . . 5 (𝜑𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
7 sscrel 17720 . . . . . . 7 Rel ⊆cat
87brrelex2i 5671 . . . . . 6 (𝐻cat 𝐽𝐽 ∈ V)
9 dmexg 7831 . . . . . 6 (𝐽 ∈ V → dom 𝐽 ∈ V)
10 dmexg 7831 . . . . . 6 (dom 𝐽 ∈ V → dom dom 𝐽 ∈ V)
113, 8, 9, 104syl 19 . . . . 5 (𝜑 → dom dom 𝐽 ∈ V)
124, 6, 11isssc 17727 . . . 4 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
133, 12mpbid 232 . . 3 (𝜑 → (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
1413simprd 495 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))
15 oveq1 7353 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
16 oveq1 7353 . . . 4 (𝑥 = 𝑋 → (𝑥𝐽𝑦) = (𝑋𝐽𝑦))
1715, 16sseq12d 3963 . . 3 (𝑥 = 𝑋 → ((𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦) ↔ (𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦)))
18 oveq2 7354 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
19 oveq2 7354 . . . 4 (𝑦 = 𝑌 → (𝑋𝐽𝑦) = (𝑋𝐽𝑌))
2018, 19sseq12d 3963 . . 3 (𝑦 = 𝑌 → ((𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦) ↔ (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)))
2117, 20rspc2va 3584 . 2 (((𝑋𝑆𝑌𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))
221, 2, 14, 21syl21anc 837 1 (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897   class class class wbr 5089   × cxp 5612  dom cdm 5614   Fn wfn 6476  (class class class)co 7346  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-ixp 8822  df-ssc 17717
This theorem is referenced by:  ssctr  17732  ssceq  17733  subcss2  17750  iinfssc  49168  ssccatid  49183
  Copyright terms: Public domain W3C validator