MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssc2 Structured version   Visualization version   GIF version

Theorem ssc2 17583
Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
ssc2.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
ssc2.2 (𝜑𝐻cat 𝐽)
ssc2.3 (𝜑𝑋𝑆)
ssc2.4 (𝜑𝑌𝑆)
Assertion
Ref Expression
ssc2 (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))

Proof of Theorem ssc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssc2.3 . 2 (𝜑𝑋𝑆)
2 ssc2.4 . 2 (𝜑𝑌𝑆)
3 ssc2.2 . . . 4 (𝜑𝐻cat 𝐽)
4 ssc2.1 . . . . 5 (𝜑𝐻 Fn (𝑆 × 𝑆))
5 eqidd 2737 . . . . . 6 (𝜑 → dom dom 𝐽 = dom dom 𝐽)
63, 5sscfn2 17579 . . . . 5 (𝜑𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
7 sscrel 17574 . . . . . . 7 Rel ⊆cat
87brrelex2i 5655 . . . . . 6 (𝐻cat 𝐽𝐽 ∈ V)
9 dmexg 7782 . . . . . 6 (𝐽 ∈ V → dom 𝐽 ∈ V)
10 dmexg 7782 . . . . . 6 (dom 𝐽 ∈ V → dom dom 𝐽 ∈ V)
113, 8, 9, 104syl 19 . . . . 5 (𝜑 → dom dom 𝐽 ∈ V)
124, 6, 11isssc 17581 . . . 4 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
133, 12mpbid 231 . . 3 (𝜑 → (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
1413simprd 497 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))
15 oveq1 7314 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
16 oveq1 7314 . . . 4 (𝑥 = 𝑋 → (𝑥𝐽𝑦) = (𝑋𝐽𝑦))
1715, 16sseq12d 3959 . . 3 (𝑥 = 𝑋 → ((𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦) ↔ (𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦)))
18 oveq2 7315 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
19 oveq2 7315 . . . 4 (𝑦 = 𝑌 → (𝑋𝐽𝑦) = (𝑋𝐽𝑌))
2018, 19sseq12d 3959 . . 3 (𝑦 = 𝑌 → ((𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦) ↔ (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)))
2117, 20rspc2va 3576 . 2 (((𝑋𝑆𝑌𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))
221, 2, 14, 21syl21anc 836 1 (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wral 3062  Vcvv 3437  wss 3892   class class class wbr 5081   × cxp 5598  dom cdm 5600   Fn wfn 6453  (class class class)co 7307  cat cssc 17568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-ixp 8717  df-ssc 17571
This theorem is referenced by:  ssctr  17586  ssceq  17587  subcss2  17607
  Copyright terms: Public domain W3C validator