| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssc2 | Structured version Visualization version GIF version | ||
| Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| ssc2.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| ssc2.2 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
| ssc2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| ssc2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| ssc2 | ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssc2.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 2 | ssc2.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 3 | ssc2.2 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
| 4 | ssc2.1 | . . . . 5 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 5 | eqidd 2732 | . . . . . 6 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
| 6 | 3, 5 | sscfn2 17725 | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 7 | sscrel 17720 | . . . . . . 7 ⊢ Rel ⊆cat | |
| 8 | 7 | brrelex2i 5671 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
| 9 | dmexg 7831 | . . . . . 6 ⊢ (𝐽 ∈ V → dom 𝐽 ∈ V) | |
| 10 | dmexg 7831 | . . . . . 6 ⊢ (dom 𝐽 ∈ V → dom dom 𝐽 ∈ V) | |
| 11 | 3, 8, 9, 10 | 4syl 19 | . . . . 5 ⊢ (𝜑 → dom dom 𝐽 ∈ V) |
| 12 | 4, 6, 11 | isssc 17727 | . . . 4 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
| 13 | 3, 12 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
| 14 | 13 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) |
| 15 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) | |
| 16 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐽𝑦) = (𝑋𝐽𝑦)) | |
| 17 | 15, 16 | sseq12d 3963 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦) ↔ (𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦))) |
| 18 | oveq2 7354 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) | |
| 19 | oveq2 7354 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐽𝑦) = (𝑋𝐽𝑌)) | |
| 20 | 18, 19 | sseq12d 3963 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦) ↔ (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))) |
| 21 | 17, 20 | rspc2va 3584 | . 2 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
| 22 | 1, 2, 14, 21 | syl21anc 837 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 × cxp 5612 dom cdm 5614 Fn wfn 6476 (class class class)co 7346 ⊆cat cssc 17714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-ixp 8822 df-ssc 17717 |
| This theorem is referenced by: ssctr 17732 ssceq 17733 subcss2 17750 iinfssc 49168 ssccatid 49183 |
| Copyright terms: Public domain | W3C validator |