Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssc2 | Structured version Visualization version GIF version |
Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
ssc2.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
ssc2.2 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
ssc2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
ssc2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
ssc2 | ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssc2.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
2 | ssc2.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
3 | ssc2.2 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
4 | ssc2.1 | . . . . 5 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
5 | eqidd 2737 | . . . . . 6 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
6 | 3, 5 | sscfn2 17579 | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
7 | sscrel 17574 | . . . . . . 7 ⊢ Rel ⊆cat | |
8 | 7 | brrelex2i 5655 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
9 | dmexg 7782 | . . . . . 6 ⊢ (𝐽 ∈ V → dom 𝐽 ∈ V) | |
10 | dmexg 7782 | . . . . . 6 ⊢ (dom 𝐽 ∈ V → dom dom 𝐽 ∈ V) | |
11 | 3, 8, 9, 10 | 4syl 19 | . . . . 5 ⊢ (𝜑 → dom dom 𝐽 ∈ V) |
12 | 4, 6, 11 | isssc 17581 | . . . 4 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
13 | 3, 12 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
14 | 13 | simprd 497 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) |
15 | oveq1 7314 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) | |
16 | oveq1 7314 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐽𝑦) = (𝑋𝐽𝑦)) | |
17 | 15, 16 | sseq12d 3959 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦) ↔ (𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦))) |
18 | oveq2 7315 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) | |
19 | oveq2 7315 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐽𝑦) = (𝑋𝐽𝑌)) | |
20 | 18, 19 | sseq12d 3959 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦) ↔ (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))) |
21 | 17, 20 | rspc2va 3576 | . 2 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
22 | 1, 2, 14, 21 | syl21anc 836 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 Vcvv 3437 ⊆ wss 3892 class class class wbr 5081 × cxp 5598 dom cdm 5600 Fn wfn 6453 (class class class)co 7307 ⊆cat cssc 17568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-ixp 8717 df-ssc 17571 |
This theorem is referenced by: ssctr 17586 ssceq 17587 subcss2 17607 |
Copyright terms: Public domain | W3C validator |