Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssc2 | Structured version Visualization version GIF version |
Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
ssc2.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
ssc2.2 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
ssc2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
ssc2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
ssc2 | ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssc2.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
2 | ssc2.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
3 | ssc2.2 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
4 | ssc2.1 | . . . . 5 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
5 | eqidd 2740 | . . . . . 6 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
6 | 3, 5 | sscfn2 17511 | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
7 | sscrel 17506 | . . . . . . 7 ⊢ Rel ⊆cat | |
8 | 7 | brrelex2i 5643 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
9 | dmexg 7737 | . . . . . 6 ⊢ (𝐽 ∈ V → dom 𝐽 ∈ V) | |
10 | dmexg 7737 | . . . . . 6 ⊢ (dom 𝐽 ∈ V → dom dom 𝐽 ∈ V) | |
11 | 3, 8, 9, 10 | 4syl 19 | . . . . 5 ⊢ (𝜑 → dom dom 𝐽 ∈ V) |
12 | 4, 6, 11 | isssc 17513 | . . . 4 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
13 | 3, 12 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
14 | 13 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) |
15 | oveq1 7275 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) | |
16 | oveq1 7275 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐽𝑦) = (𝑋𝐽𝑦)) | |
17 | 15, 16 | sseq12d 3958 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦) ↔ (𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦))) |
18 | oveq2 7276 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) | |
19 | oveq2 7276 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐽𝑦) = (𝑋𝐽𝑌)) | |
20 | 18, 19 | sseq12d 3958 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦) ↔ (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))) |
21 | 17, 20 | rspc2va 3571 | . 2 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
22 | 1, 2, 14, 21 | syl21anc 834 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 ⊆ wss 3891 class class class wbr 5078 × cxp 5586 dom cdm 5588 Fn wfn 6425 (class class class)co 7268 ⊆cat cssc 17500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-ixp 8660 df-ssc 17503 |
This theorem is referenced by: ssctr 17518 ssceq 17519 subcss2 17539 |
Copyright terms: Public domain | W3C validator |