| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssc2 | Structured version Visualization version GIF version | ||
| Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| ssc2.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| ssc2.2 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
| ssc2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| ssc2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| ssc2 | ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssc2.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 2 | ssc2.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 3 | ssc2.2 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
| 4 | ssc2.1 | . . . . 5 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 5 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
| 6 | 3, 5 | sscfn2 17780 | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 7 | sscrel 17775 | . . . . . . 7 ⊢ Rel ⊆cat | |
| 8 | 7 | brrelex2i 5695 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
| 9 | dmexg 7877 | . . . . . 6 ⊢ (𝐽 ∈ V → dom 𝐽 ∈ V) | |
| 10 | dmexg 7877 | . . . . . 6 ⊢ (dom 𝐽 ∈ V → dom dom 𝐽 ∈ V) | |
| 11 | 3, 8, 9, 10 | 4syl 19 | . . . . 5 ⊢ (𝜑 → dom dom 𝐽 ∈ V) |
| 12 | 4, 6, 11 | isssc 17782 | . . . 4 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
| 13 | 3, 12 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
| 14 | 13 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) |
| 15 | oveq1 7394 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) | |
| 16 | oveq1 7394 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐽𝑦) = (𝑋𝐽𝑦)) | |
| 17 | 15, 16 | sseq12d 3980 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦) ↔ (𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦))) |
| 18 | oveq2 7395 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) | |
| 19 | oveq2 7395 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐽𝑦) = (𝑋𝐽𝑌)) | |
| 20 | 18, 19 | sseq12d 3980 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦) ↔ (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))) |
| 21 | 17, 20 | rspc2va 3600 | . 2 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
| 22 | 1, 2, 14, 21 | syl21anc 837 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 dom cdm 5638 Fn wfn 6506 (class class class)co 7387 ⊆cat cssc 17769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-ixp 8871 df-ssc 17772 |
| This theorem is referenced by: ssctr 17787 ssceq 17788 subcss2 17805 iinfssc 49046 ssccatid 49061 |
| Copyright terms: Public domain | W3C validator |