![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssc1 | Structured version Visualization version GIF version |
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
isssc.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
isssc.2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
ssc1.3 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
Ref | Expression |
---|---|
ssc1 | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssc1.3 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | isssc.1 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | isssc.2 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
4 | sscrel 17874 | . . . . . . 7 ⊢ Rel ⊆cat | |
5 | 4 | brrelex2i 5757 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
6 | 1, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
7 | 3 | ssclem 17880 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V)) |
8 | 6, 7 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ V) |
9 | 2, 3, 8 | isssc 17881 | . . 3 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
10 | 1, 9 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
11 | 10 | simpld 494 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 Fn wfn 6568 (class class class)co 7448 ⊆cat cssc 17868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-ixp 8956 df-ssc 17871 |
This theorem is referenced by: ssctr 17886 ssceq 17887 subcss1 17906 issubc3 17913 subsubc 17917 |
Copyright terms: Public domain | W3C validator |