| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssc1 | Structured version Visualization version GIF version | ||
| Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| isssc.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| isssc.2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
| ssc1.3 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
| Ref | Expression |
|---|---|
| ssc1 | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssc1.3 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
| 2 | isssc.1 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 3 | isssc.2 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
| 4 | sscrel 17826 | . . . . . . 7 ⊢ Rel ⊆cat | |
| 5 | 4 | brrelex2i 5711 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
| 6 | 1, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
| 7 | 3 | ssclem 17832 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V)) |
| 8 | 6, 7 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ V) |
| 9 | 2, 3, 8 | isssc 17833 | . . 3 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
| 10 | 1, 9 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
| 11 | 10 | simpld 494 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 class class class wbr 5119 × cxp 5652 Fn wfn 6526 (class class class)co 7405 ⊆cat cssc 17820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-ixp 8912 df-ssc 17823 |
| This theorem is referenced by: ssctr 17838 ssceq 17839 subcss1 17855 issubc3 17862 subsubc 17866 iinfssc 49024 ssccatid 49039 |
| Copyright terms: Public domain | W3C validator |