MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssc1 Structured version   Visualization version   GIF version

Theorem ssc1 17728
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
isssc.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
ssc1.3 (𝜑𝐻cat 𝐽)
Assertion
Ref Expression
ssc1 (𝜑𝑆𝑇)

Proof of Theorem ssc1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssc1.3 . . 3 (𝜑𝐻cat 𝐽)
2 isssc.1 . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 isssc.2 . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
4 sscrel 17720 . . . . . . 7 Rel ⊆cat
54brrelex2i 5676 . . . . . 6 (𝐻cat 𝐽𝐽 ∈ V)
61, 5syl 17 . . . . 5 (𝜑𝐽 ∈ V)
73ssclem 17726 . . . . 5 (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V))
86, 7mpbid 232 . . . 4 (𝜑𝑇 ∈ V)
92, 3, 8isssc 17727 . . 3 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
101, 9mpbid 232 . 2 (𝜑 → (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
1110simpld 494 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  Vcvv 3436  wss 3903   class class class wbr 5092   × cxp 5617   Fn wfn 6477  (class class class)co 7349  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-ixp 8825  df-ssc 17717
This theorem is referenced by:  ssctr  17732  ssceq  17733  subcss1  17749  issubc3  17756  subsubc  17760  iinfssc  49052  ssccatid  49067
  Copyright terms: Public domain W3C validator