MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssc1 Structured version   Visualization version   GIF version

Theorem ssc1 17728
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
isssc.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
ssc1.3 (𝜑𝐻cat 𝐽)
Assertion
Ref Expression
ssc1 (𝜑𝑆𝑇)

Proof of Theorem ssc1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssc1.3 . . 3 (𝜑𝐻cat 𝐽)
2 isssc.1 . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 isssc.2 . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
4 sscrel 17720 . . . . . . 7 Rel ⊆cat
54brrelex2i 5671 . . . . . 6 (𝐻cat 𝐽𝐽 ∈ V)
61, 5syl 17 . . . . 5 (𝜑𝐽 ∈ V)
73ssclem 17726 . . . . 5 (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V))
86, 7mpbid 232 . . . 4 (𝜑𝑇 ∈ V)
92, 3, 8isssc 17727 . . 3 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
101, 9mpbid 232 . 2 (𝜑 → (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
1110simpld 494 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  Vcvv 3436  wss 3897   class class class wbr 5089   × cxp 5612   Fn wfn 6476  (class class class)co 7346  cat cssc 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-ixp 8822  df-ssc 17717
This theorem is referenced by:  ssctr  17732  ssceq  17733  subcss1  17749  issubc3  17756  subsubc  17760  iinfssc  49168  ssccatid  49183
  Copyright terms: Public domain W3C validator