MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssc1 Structured version   Visualization version   GIF version

Theorem ssc1 17775
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
isssc.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
ssc1.3 (𝜑𝐻cat 𝐽)
Assertion
Ref Expression
ssc1 (𝜑𝑆𝑇)

Proof of Theorem ssc1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssc1.3 . . 3 (𝜑𝐻cat 𝐽)
2 isssc.1 . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 isssc.2 . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
4 sscrel 17767 . . . . . . 7 Rel ⊆cat
54brrelex2i 5733 . . . . . 6 (𝐻cat 𝐽𝐽 ∈ V)
61, 5syl 17 . . . . 5 (𝜑𝐽 ∈ V)
73ssclem 17773 . . . . 5 (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V))
86, 7mpbid 231 . . . 4 (𝜑𝑇 ∈ V)
92, 3, 8isssc 17774 . . 3 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
101, 9mpbid 231 . 2 (𝜑 → (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
1110simpld 494 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wral 3060  Vcvv 3473  wss 3948   class class class wbr 5148   × cxp 5674   Fn wfn 6538  (class class class)co 7412  cat cssc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-ixp 8898  df-ssc 17764
This theorem is referenced by:  ssctr  17779  ssceq  17780  subcss1  17799  issubc3  17806  subsubc  17810
  Copyright terms: Public domain W3C validator