MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssc1 Structured version   Visualization version   GIF version

Theorem ssc1 17603
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
isssc.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
ssc1.3 (𝜑𝐻cat 𝐽)
Assertion
Ref Expression
ssc1 (𝜑𝑆𝑇)

Proof of Theorem ssc1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssc1.3 . . 3 (𝜑𝐻cat 𝐽)
2 isssc.1 . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 isssc.2 . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
4 sscrel 17595 . . . . . . 7 Rel ⊆cat
54brrelex2i 5662 . . . . . 6 (𝐻cat 𝐽𝐽 ∈ V)
61, 5syl 17 . . . . 5 (𝜑𝐽 ∈ V)
73ssclem 17601 . . . . 5 (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V))
86, 7mpbid 231 . . . 4 (𝜑𝑇 ∈ V)
92, 3, 8isssc 17602 . . 3 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
101, 9mpbid 231 . 2 (𝜑 → (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
1110simpld 495 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  wral 3062  Vcvv 3441  wss 3897   class class class wbr 5087   × cxp 5605   Fn wfn 6460  (class class class)co 7315  cat cssc 17589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7318  df-ixp 8734  df-ssc 17592
This theorem is referenced by:  ssctr  17607  ssceq  17608  subcss1  17627  issubc3  17634  subsubc  17638
  Copyright terms: Public domain W3C validator