![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssc1 | Structured version Visualization version GIF version |
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
isssc.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
isssc.2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
ssc1.3 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
Ref | Expression |
---|---|
ssc1 | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssc1.3 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | isssc.1 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | isssc.2 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
4 | sscrel 17767 | . . . . . . 7 ⊢ Rel ⊆cat | |
5 | 4 | brrelex2i 5733 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
6 | 1, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
7 | 3 | ssclem 17773 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V)) |
8 | 6, 7 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ V) |
9 | 2, 3, 8 | isssc 17774 | . . 3 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
10 | 1, 9 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
11 | 10 | simpld 494 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ⊆ wss 3948 class class class wbr 5148 × cxp 5674 Fn wfn 6538 (class class class)co 7412 ⊆cat cssc 17761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-ixp 8898 df-ssc 17764 |
This theorem is referenced by: ssctr 17779 ssceq 17780 subcss1 17799 issubc3 17806 subsubc 17810 |
Copyright terms: Public domain | W3C validator |