| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssc1 | Structured version Visualization version GIF version | ||
| Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| isssc.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| isssc.2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
| ssc1.3 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
| Ref | Expression |
|---|---|
| ssc1 | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssc1.3 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
| 2 | isssc.1 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 3 | isssc.2 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
| 4 | sscrel 17782 | . . . . . . 7 ⊢ Rel ⊆cat | |
| 5 | 4 | brrelex2i 5698 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
| 6 | 1, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
| 7 | 3 | ssclem 17788 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V)) |
| 8 | 6, 7 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ V) |
| 9 | 2, 3, 8 | isssc 17789 | . . 3 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
| 10 | 1, 9 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
| 11 | 10 | simpld 494 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 × cxp 5639 Fn wfn 6509 (class class class)co 7390 ⊆cat cssc 17776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-ixp 8874 df-ssc 17779 |
| This theorem is referenced by: ssctr 17794 ssceq 17795 subcss1 17811 issubc3 17818 subsubc 17822 iinfssc 49050 ssccatid 49065 |
| Copyright terms: Public domain | W3C validator |