![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrmsep2 | Structured version Visualization version GIF version |
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
nrmsep2 | ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐽 ∈ Nrm) | |
2 | simpr2 1251 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐷 ∈ (Clsd‘𝐽)) | |
3 | eqid 2799 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | cldopn 21164 | . . . 4 ⊢ (𝐷 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
6 | simpr1 1249 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ∈ (Clsd‘𝐽)) | |
7 | simpr3 1253 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (𝐶 ∩ 𝐷) = ∅) | |
8 | 3 | cldss 21162 | . . . . 5 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ ∪ 𝐽) |
9 | reldisj 4215 | . . . . 5 ⊢ (𝐶 ⊆ ∪ 𝐽 → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) | |
10 | 6, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) |
11 | 7, 10 | mpbid 224 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷)) |
12 | nrmsep3 21488 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ ((∪ 𝐽 ∖ 𝐷) ∈ 𝐽 ∧ 𝐶 ∈ (Clsd‘𝐽) ∧ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) | |
13 | 1, 5, 6, 11, 12 | syl13anc 1492 | . 2 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) |
14 | ssdifin0 4244 | . . . 4 ⊢ (((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅) | |
15 | 14 | anim2i 611 | . . 3 ⊢ ((𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
16 | 15 | reximi 3191 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
17 | 13, 16 | syl 17 | 1 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 ∖ cdif 3766 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 ∪ cuni 4628 ‘cfv 6101 Clsdccld 21149 clsccl 21151 Nrmcnrm 21443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fn 6104 df-fv 6109 df-top 21027 df-cld 21152 df-nrm 21450 |
This theorem is referenced by: nrmsep 21490 isnrm2 21491 |
Copyright terms: Public domain | W3C validator |