![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrmsep2 | Structured version Visualization version GIF version |
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
nrmsep2 | ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐽 ∈ Nrm) | |
2 | simpr2 1196 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐷 ∈ (Clsd‘𝐽)) | |
3 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | cldopn 22405 | . . . 4 ⊢ (𝐷 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
6 | simpr1 1195 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ∈ (Clsd‘𝐽)) | |
7 | simpr3 1197 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (𝐶 ∩ 𝐷) = ∅) | |
8 | 3 | cldss 22403 | . . . . 5 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ ∪ 𝐽) |
9 | reldisj 4415 | . . . . 5 ⊢ (𝐶 ⊆ ∪ 𝐽 → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) | |
10 | 6, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) |
11 | 7, 10 | mpbid 231 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷)) |
12 | nrmsep3 22729 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ ((∪ 𝐽 ∖ 𝐷) ∈ 𝐽 ∧ 𝐶 ∈ (Clsd‘𝐽) ∧ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) | |
13 | 1, 5, 6, 11, 12 | syl13anc 1373 | . 2 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) |
14 | ssdifin0 4447 | . . . 4 ⊢ (((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅) | |
15 | 14 | anim2i 618 | . . 3 ⊢ ((𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
16 | 15 | reximi 3084 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
17 | 13, 16 | syl 17 | 1 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∃wrex 3070 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4286 ∪ cuni 4869 ‘cfv 6500 Clsdccld 22390 clsccl 22392 Nrmcnrm 22684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-iota 6452 df-fun 6502 df-fn 6503 df-fv 6508 df-top 22266 df-cld 22393 df-nrm 22691 |
This theorem is referenced by: nrmsep 22731 isnrm2 22732 |
Copyright terms: Public domain | W3C validator |