Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrmsep2 | Structured version Visualization version GIF version |
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
nrmsep2 | ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐽 ∈ Nrm) | |
2 | simpr2 1193 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐷 ∈ (Clsd‘𝐽)) | |
3 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | cldopn 22090 | . . . 4 ⊢ (𝐷 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
6 | simpr1 1192 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ∈ (Clsd‘𝐽)) | |
7 | simpr3 1194 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (𝐶 ∩ 𝐷) = ∅) | |
8 | 3 | cldss 22088 | . . . . 5 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ ∪ 𝐽) |
9 | reldisj 4382 | . . . . 5 ⊢ (𝐶 ⊆ ∪ 𝐽 → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) | |
10 | 6, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) |
11 | 7, 10 | mpbid 231 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷)) |
12 | nrmsep3 22414 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ ((∪ 𝐽 ∖ 𝐷) ∈ 𝐽 ∧ 𝐶 ∈ (Clsd‘𝐽) ∧ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) | |
13 | 1, 5, 6, 11, 12 | syl13anc 1370 | . 2 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) |
14 | ssdifin0 4413 | . . . 4 ⊢ (((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅) | |
15 | 14 | anim2i 616 | . . 3 ⊢ ((𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
16 | 15 | reximi 3174 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
17 | 13, 16 | syl 17 | 1 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ‘cfv 6418 Clsdccld 22075 clsccl 22077 Nrmcnrm 22369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-top 21951 df-cld 22078 df-nrm 22376 |
This theorem is referenced by: nrmsep 22416 isnrm2 22417 |
Copyright terms: Public domain | W3C validator |