![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrmsep2 | Structured version Visualization version GIF version |
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
nrmsep2 | ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐽 ∈ Nrm) | |
2 | simpr2 1192 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐷 ∈ (Clsd‘𝐽)) | |
3 | eqid 2724 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | cldopn 22879 | . . . 4 ⊢ (𝐷 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
6 | simpr1 1191 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ∈ (Clsd‘𝐽)) | |
7 | simpr3 1193 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (𝐶 ∩ 𝐷) = ∅) | |
8 | 3 | cldss 22877 | . . . . 5 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ ∪ 𝐽) |
9 | reldisj 4444 | . . . . 5 ⊢ (𝐶 ⊆ ∪ 𝐽 → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) | |
10 | 6, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) |
11 | 7, 10 | mpbid 231 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷)) |
12 | nrmsep3 23203 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ ((∪ 𝐽 ∖ 𝐷) ∈ 𝐽 ∧ 𝐶 ∈ (Clsd‘𝐽) ∧ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) | |
13 | 1, 5, 6, 11, 12 | syl13anc 1369 | . 2 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) |
14 | ssdifin0 4478 | . . . 4 ⊢ (((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅) | |
15 | 14 | anim2i 616 | . . 3 ⊢ ((𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
16 | 15 | reximi 3076 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
17 | 13, 16 | syl 17 | 1 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 ∖ cdif 3938 ∩ cin 3940 ⊆ wss 3941 ∅c0 4315 ∪ cuni 4900 ‘cfv 6534 Clsdccld 22864 clsccl 22866 Nrmcnrm 23158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fn 6537 df-fv 6542 df-top 22740 df-cld 22867 df-nrm 23165 |
This theorem is referenced by: nrmsep 23205 isnrm2 23206 |
Copyright terms: Public domain | W3C validator |