| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrmsep2 | Structured version Visualization version GIF version | ||
| Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| nrmsep2 | ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐽 ∈ Nrm) | |
| 2 | simpr2 1196 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐷 ∈ (Clsd‘𝐽)) | |
| 3 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | cldopn 22918 | . . . 4 ⊢ (𝐷 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (∪ 𝐽 ∖ 𝐷) ∈ 𝐽) |
| 6 | simpr1 1195 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ∈ (Clsd‘𝐽)) | |
| 7 | simpr3 1197 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → (𝐶 ∩ 𝐷) = ∅) | |
| 8 | 3 | cldss 22916 | . . . . 5 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ ∪ 𝐽) |
| 9 | reldisj 4416 | . . . . 5 ⊢ (𝐶 ⊆ ∪ 𝐽 → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) | |
| 10 | 6, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ((𝐶 ∩ 𝐷) = ∅ ↔ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) |
| 11 | 7, 10 | mpbid 232 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷)) |
| 12 | nrmsep3 23242 | . . 3 ⊢ ((𝐽 ∈ Nrm ∧ ((∪ 𝐽 ∖ 𝐷) ∈ 𝐽 ∧ 𝐶 ∈ (Clsd‘𝐽) ∧ 𝐶 ⊆ (∪ 𝐽 ∖ 𝐷))) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) | |
| 13 | 1, 5, 6, 11, 12 | syl13anc 1374 | . 2 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷))) |
| 14 | ssdifin0 4449 | . . . 4 ⊢ (((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅) | |
| 15 | 14 | anim2i 617 | . . 3 ⊢ ((𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
| 16 | 15 | reximi 3067 | . 2 ⊢ (∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝐷)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
| 17 | 13, 16 | syl 17 | 1 ⊢ ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶 ∩ 𝐷) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ‘cfv 6511 Clsdccld 22903 clsccl 22905 Nrmcnrm 23197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-top 22781 df-cld 22906 df-nrm 23204 |
| This theorem is referenced by: nrmsep 23244 isnrm2 23245 |
| Copyright terms: Public domain | W3C validator |