MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep2 Structured version   Visualization version   GIF version

Theorem nrmsep2 22507
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐽

Proof of Theorem nrmsep2
StepHypRef Expression
1 simpl 483 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐽 ∈ Nrm)
2 simpr2 1194 . . . 4 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐷 ∈ (Clsd‘𝐽))
3 eqid 2738 . . . . 5 𝐽 = 𝐽
43cldopn 22182 . . . 4 (𝐷 ∈ (Clsd‘𝐽) → ( 𝐽𝐷) ∈ 𝐽)
52, 4syl 17 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ( 𝐽𝐷) ∈ 𝐽)
6 simpr1 1193 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐶 ∈ (Clsd‘𝐽))
7 simpr3 1195 . . . 4 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → (𝐶𝐷) = ∅)
83cldss 22180 . . . . 5 (𝐶 ∈ (Clsd‘𝐽) → 𝐶 𝐽)
9 reldisj 4385 . . . . 5 (𝐶 𝐽 → ((𝐶𝐷) = ∅ ↔ 𝐶 ⊆ ( 𝐽𝐷)))
106, 8, 93syl 18 . . . 4 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ((𝐶𝐷) = ∅ ↔ 𝐶 ⊆ ( 𝐽𝐷)))
117, 10mpbid 231 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐶 ⊆ ( 𝐽𝐷))
12 nrmsep3 22506 . . 3 ((𝐽 ∈ Nrm ∧ (( 𝐽𝐷) ∈ 𝐽𝐶 ∈ (Clsd‘𝐽) ∧ 𝐶 ⊆ ( 𝐽𝐷))) → ∃𝑥𝐽 (𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)))
131, 5, 6, 11, 12syl13anc 1371 . 2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)))
14 ssdifin0 4416 . . . 4 (((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)
1514anim2i 617 . . 3 ((𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)) → (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
1615reximi 3178 . 2 (∃𝑥𝐽 (𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
1713, 16syl 17 1 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cdif 3884  cin 3886  wss 3887  c0 4256   cuni 4839  cfv 6433  Clsdccld 22167  clsccl 22169  Nrmcnrm 22461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-top 22043  df-cld 22170  df-nrm 22468
This theorem is referenced by:  nrmsep  22508  isnrm2  22509
  Copyright terms: Public domain W3C validator