MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep2 Structured version   Visualization version   GIF version

Theorem nrmsep2 21489
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐽

Proof of Theorem nrmsep2
StepHypRef Expression
1 simpl 475 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐽 ∈ Nrm)
2 simpr2 1251 . . . 4 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐷 ∈ (Clsd‘𝐽))
3 eqid 2799 . . . . 5 𝐽 = 𝐽
43cldopn 21164 . . . 4 (𝐷 ∈ (Clsd‘𝐽) → ( 𝐽𝐷) ∈ 𝐽)
52, 4syl 17 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ( 𝐽𝐷) ∈ 𝐽)
6 simpr1 1249 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐶 ∈ (Clsd‘𝐽))
7 simpr3 1253 . . . 4 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → (𝐶𝐷) = ∅)
83cldss 21162 . . . . 5 (𝐶 ∈ (Clsd‘𝐽) → 𝐶 𝐽)
9 reldisj 4215 . . . . 5 (𝐶 𝐽 → ((𝐶𝐷) = ∅ ↔ 𝐶 ⊆ ( 𝐽𝐷)))
106, 8, 93syl 18 . . . 4 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ((𝐶𝐷) = ∅ ↔ 𝐶 ⊆ ( 𝐽𝐷)))
117, 10mpbid 224 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐶 ⊆ ( 𝐽𝐷))
12 nrmsep3 21488 . . 3 ((𝐽 ∈ Nrm ∧ (( 𝐽𝐷) ∈ 𝐽𝐶 ∈ (Clsd‘𝐽) ∧ 𝐶 ⊆ ( 𝐽𝐷))) → ∃𝑥𝐽 (𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)))
131, 5, 6, 11, 12syl13anc 1492 . 2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)))
14 ssdifin0 4244 . . . 4 (((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)
1514anim2i 611 . . 3 ((𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)) → (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
1615reximi 3191 . 2 (∃𝑥𝐽 (𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
1713, 16syl 17 1 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wrex 3090  cdif 3766  cin 3768  wss 3769  c0 4115   cuni 4628  cfv 6101  Clsdccld 21149  clsccl 21151  Nrmcnrm 21443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-iota 6064  df-fun 6103  df-fn 6104  df-fv 6109  df-top 21027  df-cld 21152  df-nrm 21450
This theorem is referenced by:  nrmsep  21490  isnrm2  21491
  Copyright terms: Public domain W3C validator