MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numacn Structured version   Visualization version   GIF version

Theorem numacn 9962
Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
numacn (𝐴𝑉 → (𝑋 ∈ dom card → 𝑋AC 𝐴))

Proof of Theorem numacn
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴𝑉𝐴 ∈ V)
2 simpll 766 . . . . . . . 8 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑋 ∈ dom card)
3 elmapi 8783 . . . . . . . . . . . 12 (𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑋 ∖ {∅}))
43adantl 481 . . . . . . . . . . 11 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑋 ∖ {∅}))
54frnd 6664 . . . . . . . . . 10 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓 ⊆ (𝒫 𝑋 ∖ {∅}))
65difss2d 4092 . . . . . . . . 9 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓 ⊆ 𝒫 𝑋)
7 sspwuni 5052 . . . . . . . . 9 (ran 𝑓 ⊆ 𝒫 𝑋 ran 𝑓𝑋)
86, 7sylib 218 . . . . . . . 8 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓𝑋)
9 ssnum 9952 . . . . . . . 8 ((𝑋 ∈ dom card ∧ ran 𝑓𝑋) → ran 𝑓 ∈ dom card)
102, 8, 9syl2anc 584 . . . . . . 7 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓 ∈ dom card)
11 ssdifin0 4439 . . . . . . . . 9 (ran 𝑓 ⊆ (𝒫 𝑋 ∖ {∅}) → (ran 𝑓 ∩ {∅}) = ∅)
125, 11syl 17 . . . . . . . 8 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → (ran 𝑓 ∩ {∅}) = ∅)
13 disjsn 4665 . . . . . . . 8 ((ran 𝑓 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ran 𝑓)
1412, 13sylib 218 . . . . . . 7 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ¬ ∅ ∈ ran 𝑓)
15 ac5num 9949 . . . . . . 7 (( ran 𝑓 ∈ dom card ∧ ¬ ∅ ∈ ran 𝑓) → ∃(:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦))
1610, 14, 15syl2anc 584 . . . . . 6 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃(:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦))
17 simpllr 775 . . . . . . 7 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦)) → 𝐴 ∈ V)
184ffnd 6657 . . . . . . . . . 10 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑓 Fn 𝐴)
19 fveq2 6826 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑥) → (𝑦) = (‘(𝑓𝑥)))
20 id 22 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑥) → 𝑦 = (𝑓𝑥))
2119, 20eleq12d 2822 . . . . . . . . . . 11 (𝑦 = (𝑓𝑥) → ((𝑦) ∈ 𝑦 ↔ (‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2221ralrn 7026 . . . . . . . . . 10 (𝑓 Fn 𝐴 → (∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦 ↔ ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2318, 22syl 17 . . . . . . . . 9 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → (∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦 ↔ ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2423biimpa 476 . . . . . . . 8 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦) → ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥))
2524adantrl 716 . . . . . . 7 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦)) → ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥))
26 acnlem 9961 . . . . . . 7 ((𝐴 ∈ V ∧ ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
2717, 25, 26syl2anc 584 . . . . . 6 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
2816, 27exlimddv 1935 . . . . 5 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
2928ralrimiva 3121 . . . 4 ((𝑋 ∈ dom card ∧ 𝐴 ∈ V) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
30 isacn 9957 . . . 4 ((𝑋 ∈ dom card ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
3129, 30mpbird 257 . . 3 ((𝑋 ∈ dom card ∧ 𝐴 ∈ V) → 𝑋AC 𝐴)
3231expcom 413 . 2 (𝐴 ∈ V → (𝑋 ∈ dom card → 𝑋AC 𝐴))
331, 32syl 17 1 (𝐴𝑉 → (𝑋 ∈ dom card → 𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3438  cdif 3902  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   cuni 4861  dom cdm 5623  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  cardccrd 9850  AC wacn 9853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-card 9854  df-acn 9857
This theorem is referenced by:  acnnum  9965  fodomnum  9970  acacni  10054  dfac13  10056  iundom  10455  iunctb  10487
  Copyright terms: Public domain W3C validator