MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numacn Structured version   Visualization version   GIF version

Theorem numacn 9940
Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
numacn (𝐴𝑉 → (𝑋 ∈ dom card → 𝑋AC 𝐴))

Proof of Theorem numacn
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐴𝑉𝐴 ∈ V)
2 simpll 766 . . . . . . . 8 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑋 ∈ dom card)
3 elmapi 8773 . . . . . . . . . . . 12 (𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑋 ∖ {∅}))
43adantl 481 . . . . . . . . . . 11 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑋 ∖ {∅}))
54frnd 6659 . . . . . . . . . 10 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓 ⊆ (𝒫 𝑋 ∖ {∅}))
65difss2d 4089 . . . . . . . . 9 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓 ⊆ 𝒫 𝑋)
7 sspwuni 5048 . . . . . . . . 9 (ran 𝑓 ⊆ 𝒫 𝑋 ran 𝑓𝑋)
86, 7sylib 218 . . . . . . . 8 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓𝑋)
9 ssnum 9930 . . . . . . . 8 ((𝑋 ∈ dom card ∧ ran 𝑓𝑋) → ran 𝑓 ∈ dom card)
102, 8, 9syl2anc 584 . . . . . . 7 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓 ∈ dom card)
11 ssdifin0 4436 . . . . . . . . 9 (ran 𝑓 ⊆ (𝒫 𝑋 ∖ {∅}) → (ran 𝑓 ∩ {∅}) = ∅)
125, 11syl 17 . . . . . . . 8 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → (ran 𝑓 ∩ {∅}) = ∅)
13 disjsn 4664 . . . . . . . 8 ((ran 𝑓 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ran 𝑓)
1412, 13sylib 218 . . . . . . 7 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ¬ ∅ ∈ ran 𝑓)
15 ac5num 9927 . . . . . . 7 (( ran 𝑓 ∈ dom card ∧ ¬ ∅ ∈ ran 𝑓) → ∃(:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦))
1610, 14, 15syl2anc 584 . . . . . 6 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃(:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦))
17 simpllr 775 . . . . . . 7 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦)) → 𝐴 ∈ V)
184ffnd 6652 . . . . . . . . . 10 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑓 Fn 𝐴)
19 fveq2 6822 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑥) → (𝑦) = (‘(𝑓𝑥)))
20 id 22 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑥) → 𝑦 = (𝑓𝑥))
2119, 20eleq12d 2825 . . . . . . . . . . 11 (𝑦 = (𝑓𝑥) → ((𝑦) ∈ 𝑦 ↔ (‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2221ralrn 7021 . . . . . . . . . 10 (𝑓 Fn 𝐴 → (∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦 ↔ ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2318, 22syl 17 . . . . . . . . 9 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → (∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦 ↔ ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2423biimpa 476 . . . . . . . 8 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦) → ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥))
2524adantrl 716 . . . . . . 7 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦)) → ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥))
26 acnlem 9939 . . . . . . 7 ((𝐴 ∈ V ∧ ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
2717, 25, 26syl2anc 584 . . . . . 6 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
2816, 27exlimddv 1936 . . . . 5 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
2928ralrimiva 3124 . . . 4 ((𝑋 ∈ dom card ∧ 𝐴 ∈ V) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
30 isacn 9935 . . . 4 ((𝑋 ∈ dom card ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
3129, 30mpbird 257 . . 3 ((𝑋 ∈ dom card ∧ 𝐴 ∈ V) → 𝑋AC 𝐴)
3231expcom 413 . 2 (𝐴 ∈ V → (𝑋 ∈ dom card → 𝑋AC 𝐴))
331, 32syl 17 1 (𝐴𝑉 → (𝑋 ∈ dom card → 𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  cdif 3899  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576   cuni 4859  dom cdm 5616  ran crn 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cardccrd 9828  AC wacn 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-card 9832  df-acn 9835
This theorem is referenced by:  acnnum  9943  fodomnum  9948  acacni  10032  dfac13  10034  iundom  10433  iunctb  10465
  Copyright terms: Public domain W3C validator