MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numacn Structured version   Visualization version   GIF version

Theorem numacn 10002
Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
numacn (𝐴𝑉 → (𝑋 ∈ dom card → 𝑋AC 𝐴))

Proof of Theorem numacn
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐴𝑉𝐴 ∈ V)
2 simpll 766 . . . . . . . 8 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑋 ∈ dom card)
3 elmapi 8822 . . . . . . . . . . . 12 (𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑋 ∖ {∅}))
43adantl 481 . . . . . . . . . . 11 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑋 ∖ {∅}))
54frnd 6696 . . . . . . . . . 10 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓 ⊆ (𝒫 𝑋 ∖ {∅}))
65difss2d 4102 . . . . . . . . 9 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓 ⊆ 𝒫 𝑋)
7 sspwuni 5064 . . . . . . . . 9 (ran 𝑓 ⊆ 𝒫 𝑋 ran 𝑓𝑋)
86, 7sylib 218 . . . . . . . 8 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓𝑋)
9 ssnum 9992 . . . . . . . 8 ((𝑋 ∈ dom card ∧ ran 𝑓𝑋) → ran 𝑓 ∈ dom card)
102, 8, 9syl2anc 584 . . . . . . 7 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ran 𝑓 ∈ dom card)
11 ssdifin0 4449 . . . . . . . . 9 (ran 𝑓 ⊆ (𝒫 𝑋 ∖ {∅}) → (ran 𝑓 ∩ {∅}) = ∅)
125, 11syl 17 . . . . . . . 8 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → (ran 𝑓 ∩ {∅}) = ∅)
13 disjsn 4675 . . . . . . . 8 ((ran 𝑓 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ran 𝑓)
1412, 13sylib 218 . . . . . . 7 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ¬ ∅ ∈ ran 𝑓)
15 ac5num 9989 . . . . . . 7 (( ran 𝑓 ∈ dom card ∧ ¬ ∅ ∈ ran 𝑓) → ∃(:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦))
1610, 14, 15syl2anc 584 . . . . . 6 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃(:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦))
17 simpllr 775 . . . . . . 7 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦)) → 𝐴 ∈ V)
184ffnd 6689 . . . . . . . . . 10 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑓 Fn 𝐴)
19 fveq2 6858 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑥) → (𝑦) = (‘(𝑓𝑥)))
20 id 22 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑥) → 𝑦 = (𝑓𝑥))
2119, 20eleq12d 2822 . . . . . . . . . . 11 (𝑦 = (𝑓𝑥) → ((𝑦) ∈ 𝑦 ↔ (‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2221ralrn 7060 . . . . . . . . . 10 (𝑓 Fn 𝐴 → (∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦 ↔ ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2318, 22syl 17 . . . . . . . . 9 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → (∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦 ↔ ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥)))
2423biimpa 476 . . . . . . . 8 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦) → ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥))
2524adantrl 716 . . . . . . 7 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦)) → ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥))
26 acnlem 10001 . . . . . . 7 ((𝐴 ∈ V ∧ ∀𝑥𝐴 (‘(𝑓𝑥)) ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
2717, 25, 26syl2anc 584 . . . . . 6 ((((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (:ran 𝑓 ran 𝑓 ∧ ∀𝑦 ∈ ran 𝑓(𝑦) ∈ 𝑦)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
2816, 27exlimddv 1935 . . . . 5 (((𝑋 ∈ dom card ∧ 𝐴 ∈ V) ∧ 𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
2928ralrimiva 3125 . . . 4 ((𝑋 ∈ dom card ∧ 𝐴 ∈ V) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
30 isacn 9997 . . . 4 ((𝑋 ∈ dom card ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
3129, 30mpbird 257 . . 3 ((𝑋 ∈ dom card ∧ 𝐴 ∈ V) → 𝑋AC 𝐴)
3231expcom 413 . 2 (𝐴 ∈ V → (𝑋 ∈ dom card → 𝑋AC 𝐴))
331, 32syl 17 1 (𝐴𝑉 → (𝑋 ∈ dom card → 𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cuni 4871  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cardccrd 9888  AC wacn 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-card 9892  df-acn 9895
This theorem is referenced by:  acnnum  10005  fodomnum  10010  acacni  10094  dfac13  10096  iundom  10495  iunctb  10527
  Copyright terms: Public domain W3C validator