MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm3 Structured version   Visualization version   GIF version

Theorem isnrm3 23302
Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
Distinct variable groups:   𝑥,𝑦   𝑐,𝑑,𝑥,𝑦,𝐽

Proof of Theorem isnrm3
StepHypRef Expression
1 nrmtop 23279 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
2 nrmsep 23300 . . . . . 6 ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐𝑑) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))
323exp2 1355 . . . . 5 (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))))
43impd 410 . . . 4 (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
54ralrimivv 3186 . . 3 (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))
61, 5jca 511 . 2 (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
7 simpl 482 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Top)
8 simpr1 1195 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑐𝑥)
9 simpr2 1196 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑑𝑦)
10 sslin 4223 . . . . . . . . . . . 12 (𝑑𝑦 → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
119, 10syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
12 eqid 2736 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1312opncld 22976 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
1413ad4ant13 751 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
15 simpr3 1197 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) = ∅)
16 simpllr 775 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
17 elssuni 4918 . . . . . . . . . . . . . 14 (𝑥𝐽𝑥 𝐽)
18 reldisj 4433 . . . . . . . . . . . . . 14 (𝑥 𝐽 → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
1916, 17, 183syl 18 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
2015, 19mpbid 232 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥 ⊆ ( 𝐽𝑦))
2112clsss2 23015 . . . . . . . . . . . . 13 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦))
22 ssdifin0 4466 . . . . . . . . . . . . 13 (((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2321, 22syl 17 . . . . . . . . . . . 12 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2414, 20, 23syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
25 sseq0 4383 . . . . . . . . . . 11 (((((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦) ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
2611, 24, 25syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
278, 26jca 511 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))
2827rexlimdva2 3144 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∃𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
2928reximdva 3154 . . . . . . 7 (𝐽 ∈ Top → (∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
3029imim2d 57 . . . . . 6 (𝐽 ∈ Top → (((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3130ralimdv 3155 . . . . 5 (𝐽 ∈ Top → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3231ralimdv 3155 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3332imp 406 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
34 isnrm2 23301 . . 3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
357, 33, 34sylanbrc 583 . 2 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Nrm)
366, 35impbii 209 1 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  cdif 3928  cin 3930  wss 3931  c0 4313   cuni 4888  cfv 6536  Topctop 22836  Clsdccld 22959  clsccl 22961  Nrmcnrm 23253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-top 22837  df-cld 22962  df-cls 22964  df-nrm 23260
This theorem is referenced by:  metnrm  24807  isnrm4  48872  dfnrm2  48873  iscnrm3  48893
  Copyright terms: Public domain W3C validator