Proof of Theorem isnrm3
| Step | Hyp | Ref
| Expression |
| 1 | | nrmtop 23279 |
. . 3
⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) |
| 2 | | nrmsep 23300 |
. . . . . 6
⊢ ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐 ∩ 𝑑) = ∅)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 3 | 2 | 3exp2 1355 |
. . . . 5
⊢ (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))))) |
| 4 | 3 | impd 410 |
. . . 4
⊢ (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
| 5 | 4 | ralrimivv 3186 |
. . 3
⊢ (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) |
| 6 | 1, 5 | jca 511 |
. 2
⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |
| 7 | | simpl 482 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) → 𝐽 ∈ Top) |
| 8 | | simpr1 1195 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑐 ⊆ 𝑥) |
| 9 | | simpr2 1196 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑑 ⊆ 𝑦) |
| 10 | | sslin 4223 |
. . . . . . . . . . . 12
⊢ (𝑑 ⊆ 𝑦 → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦)) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦)) |
| 12 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 13 | 12 | opncld 22976 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
| 14 | 13 | ad4ant13 751 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → (∪ 𝐽
∖ 𝑦) ∈
(Clsd‘𝐽)) |
| 15 | | simpr3 1197 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → (𝑥 ∩ 𝑦) = ∅) |
| 16 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑥 ∈ 𝐽) |
| 17 | | elssuni 4918 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) |
| 18 | | reldisj 4433 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ ∪ 𝐽
→ ((𝑥 ∩ 𝑦) = ∅ ↔ 𝑥 ⊆ (∪ 𝐽
∖ 𝑦))) |
| 19 | 16, 17, 18 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → ((𝑥 ∩ 𝑦) = ∅ ↔ 𝑥 ⊆ (∪ 𝐽 ∖ 𝑦))) |
| 20 | 15, 19 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑥 ⊆ (∪ 𝐽 ∖ 𝑦)) |
| 21 | 12 | clsss2 23015 |
. . . . . . . . . . . . 13
⊢ (((∪ 𝐽
∖ 𝑦) ∈
(Clsd‘𝐽) ∧ 𝑥 ⊆ (∪ 𝐽
∖ 𝑦)) →
((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽
∖ 𝑦)) |
| 22 | | ssdifin0 4466 |
. . . . . . . . . . . . 13
⊢
(((cls‘𝐽)‘𝑥) ⊆ (∪ 𝐽 ∖ 𝑦) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (((∪ 𝐽
∖ 𝑦) ∈
(Clsd‘𝐽) ∧ 𝑥 ⊆ (∪ 𝐽
∖ 𝑦)) →
(((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅) |
| 24 | 14, 20, 23 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅) |
| 25 | | sseq0 4383 |
. . . . . . . . . . 11
⊢
(((((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦) ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅) |
| 26 | 11, 24, 25 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅) |
| 27 | 8, 26 | jca 511 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑦 ∈ 𝐽) ∧ (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → (𝑐 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)) |
| 28 | 27 | rexlimdva2 3144 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑐 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))) |
| 29 | 28 | reximdva 3154 |
. . . . . . 7
⊢ (𝐽 ∈ Top → (∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) → ∃𝑥 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))) |
| 30 | 29 | imim2d 57 |
. . . . . 6
⊢ (𝐽 ∈ Top → (((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → ((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))) |
| 31 | 30 | ralimdv 3155 |
. . . . 5
⊢ (𝐽 ∈ Top →
(∀𝑑 ∈
(Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → ∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))) |
| 32 | 31 | ralimdv 3155 |
. . . 4
⊢ (𝐽 ∈ Top →
(∀𝑐 ∈
(Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))) |
| 33 | 32 | imp 406 |
. . 3
⊢ ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))) |
| 34 | | isnrm2 23301 |
. . 3
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))) |
| 35 | 7, 33, 34 | sylanbrc 583 |
. 2
⊢ ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))) → 𝐽 ∈ Nrm) |
| 36 | 6, 35 | impbii 209 |
1
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) |