MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm3 Structured version   Visualization version   GIF version

Theorem isnrm3 23269
Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
Distinct variable groups:   𝑥,𝑦   𝑐,𝑑,𝑥,𝑦,𝐽

Proof of Theorem isnrm3
StepHypRef Expression
1 nrmtop 23246 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
2 nrmsep 23267 . . . . . 6 ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐𝑑) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))
323exp2 1355 . . . . 5 (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))))
43impd 410 . . . 4 (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
54ralrimivv 3173 . . 3 (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))
61, 5jca 511 . 2 (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
7 simpl 482 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Top)
8 simpr1 1195 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑐𝑥)
9 simpr2 1196 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑑𝑦)
10 sslin 4188 . . . . . . . . . . . 12 (𝑑𝑦 → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
119, 10syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
12 eqid 2731 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1312opncld 22943 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
1413ad4ant13 751 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
15 simpr3 1197 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) = ∅)
16 simpllr 775 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
17 elssuni 4884 . . . . . . . . . . . . . 14 (𝑥𝐽𝑥 𝐽)
18 reldisj 4398 . . . . . . . . . . . . . 14 (𝑥 𝐽 → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
1916, 17, 183syl 18 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
2015, 19mpbid 232 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥 ⊆ ( 𝐽𝑦))
2112clsss2 22982 . . . . . . . . . . . . 13 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦))
22 ssdifin0 4431 . . . . . . . . . . . . 13 (((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2321, 22syl 17 . . . . . . . . . . . 12 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2414, 20, 23syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
25 sseq0 4348 . . . . . . . . . . 11 (((((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦) ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
2611, 24, 25syl2anc 584 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
278, 26jca 511 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))
2827rexlimdva2 3135 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∃𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
2928reximdva 3145 . . . . . . 7 (𝐽 ∈ Top → (∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
3029imim2d 57 . . . . . 6 (𝐽 ∈ Top → (((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3130ralimdv 3146 . . . . 5 (𝐽 ∈ Top → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3231ralimdv 3146 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3332imp 406 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
34 isnrm2 23268 . . 3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
357, 33, 34sylanbrc 583 . 2 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Nrm)
366, 35impbii 209 1 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cdif 3894  cin 3896  wss 3897  c0 4278   cuni 4854  cfv 6476  Topctop 22803  Clsdccld 22926  clsccl 22928  Nrmcnrm 23220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-top 22804  df-cld 22929  df-cls 22931  df-nrm 23227
This theorem is referenced by:  metnrm  24773  isnrm4  48962  dfnrm2  48963  iscnrm3  48983
  Copyright terms: Public domain W3C validator