MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm3 Structured version   Visualization version   GIF version

Theorem isnrm3 22418
Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
Distinct variable groups:   𝑥,𝑦   𝑐,𝑑,𝑥,𝑦,𝐽

Proof of Theorem isnrm3
StepHypRef Expression
1 nrmtop 22395 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
2 nrmsep 22416 . . . . . 6 ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐𝑑) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))
323exp2 1352 . . . . 5 (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))))
43impd 410 . . . 4 (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
54ralrimivv 3113 . . 3 (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))
61, 5jca 511 . 2 (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
7 simpl 482 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Top)
8 simpr1 1192 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑐𝑥)
9 simpr2 1193 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑑𝑦)
10 sslin 4165 . . . . . . . . . . . 12 (𝑑𝑦 → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
119, 10syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
12 eqid 2738 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1312opncld 22092 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
1413ad4ant13 747 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
15 simpr3 1194 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) = ∅)
16 simpllr 772 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
17 elssuni 4868 . . . . . . . . . . . . . 14 (𝑥𝐽𝑥 𝐽)
18 reldisj 4382 . . . . . . . . . . . . . 14 (𝑥 𝐽 → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
1916, 17, 183syl 18 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
2015, 19mpbid 231 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥 ⊆ ( 𝐽𝑦))
2112clsss2 22131 . . . . . . . . . . . . 13 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦))
22 ssdifin0 4413 . . . . . . . . . . . . 13 (((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2321, 22syl 17 . . . . . . . . . . . 12 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2414, 20, 23syl2anc 583 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
25 sseq0 4330 . . . . . . . . . . 11 (((((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦) ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
2611, 24, 25syl2anc 583 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
278, 26jca 511 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))
2827rexlimdva2 3215 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∃𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
2928reximdva 3202 . . . . . . 7 (𝐽 ∈ Top → (∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
3029imim2d 57 . . . . . 6 (𝐽 ∈ Top → (((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3130ralimdv 3103 . . . . 5 (𝐽 ∈ Top → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3231ralimdv 3103 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3332imp 406 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
34 isnrm2 22417 . . 3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
357, 33, 34sylanbrc 582 . 2 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Nrm)
366, 35impbii 208 1 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cdif 3880  cin 3882  wss 3883  c0 4253   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075  clsccl 22077  Nrmcnrm 22369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-cls 22080  df-nrm 22376
This theorem is referenced by:  metnrm  23931  isnrm4  46112  dfnrm2  46113  iscnrm3  46134
  Copyright terms: Public domain W3C validator