MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm3 Structured version   Visualization version   GIF version

Theorem isnrm3 22733
Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
Distinct variable groups:   𝑥,𝑦   𝑐,𝑑,𝑥,𝑦,𝐽

Proof of Theorem isnrm3
StepHypRef Expression
1 nrmtop 22710 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
2 nrmsep 22731 . . . . . 6 ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐𝑑) = ∅)) → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))
323exp2 1355 . . . . 5 (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))))
43impd 412 . . . 4 (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
54ralrimivv 3192 . . 3 (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))
61, 5jca 513 . 2 (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
7 simpl 484 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Top)
8 simpr1 1195 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑐𝑥)
9 simpr2 1196 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑑𝑦)
10 sslin 4198 . . . . . . . . . . . 12 (𝑑𝑦 → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
119, 10syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦))
12 eqid 2733 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1312opncld 22407 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
1413ad4ant13 750 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
15 simpr3 1197 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) = ∅)
16 simpllr 775 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
17 elssuni 4902 . . . . . . . . . . . . . 14 (𝑥𝐽𝑥 𝐽)
18 reldisj 4415 . . . . . . . . . . . . . 14 (𝑥 𝐽 → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
1916, 17, 183syl 18 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑥𝑦) = ∅ ↔ 𝑥 ⊆ ( 𝐽𝑦)))
2015, 19mpbid 231 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → 𝑥 ⊆ ( 𝐽𝑦))
2112clsss2 22446 . . . . . . . . . . . . 13 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦))
22 ssdifin0 4447 . . . . . . . . . . . . 13 (((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝑦) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2321, 22syl 17 . . . . . . . . . . . 12 ((( 𝐽𝑦) ∈ (Clsd‘𝐽) ∧ 𝑥 ⊆ ( 𝐽𝑦)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
2414, 20, 23syl2anc 585 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅)
25 sseq0 4363 . . . . . . . . . . 11 (((((cls‘𝐽)‘𝑥) ∩ 𝑑) ⊆ (((cls‘𝐽)‘𝑥) ∩ 𝑦) ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑦) = ∅) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
2611, 24, 25syl2anc 585 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)
278, 26jca 513 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑦𝐽) ∧ (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))
2827rexlimdva2 3151 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∃𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
2928reximdva 3162 . . . . . . 7 (𝐽 ∈ Top → (∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅) → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
3029imim2d 57 . . . . . 6 (𝐽 ∈ Top → (((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3130ralimdv 3163 . . . . 5 (𝐽 ∈ Top → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3231ralimdv 3163 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
3332imp 408 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅)))
34 isnrm2 22732 . . 3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽 (𝑐𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝑑) = ∅))))
357, 33, 34sylanbrc 584 . 2 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))) → 𝐽 ∈ Nrm)
366, 35impbii 208 1 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥𝐽𝑦𝐽 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3061  wrex 3070  cdif 3911  cin 3913  wss 3914  c0 4286   cuni 4869  cfv 6500  Topctop 22265  Clsdccld 22390  clsccl 22392  Nrmcnrm 22684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-top 22266  df-cld 22393  df-cls 22395  df-nrm 22691
This theorem is referenced by:  metnrm  24248  isnrm4  47053  dfnrm2  47054  iscnrm3  47075
  Copyright terms: Public domain W3C validator