MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiltx Structured version   Visualization version   GIF version

Theorem ppiltx 27087
Description: The prime-counting function π is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppiltx (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)

Proof of Theorem ppiltx
StepHypRef Expression
1 rpre 12960 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 ppicl 27041 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℕ0)
43nn0red 12504 . . . 4 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℝ)
54adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) ∈ ℝ)
6 reflcl 13758 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
71, 6syl 17 . . . 4 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
87adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
91adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ)
10 fzfi 13937 . . . . . 6 (1...(⌊‘𝐴)) ∈ Fin
11 inss1 4200 . . . . . . 7 ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))
12 2eluzge1 12841 . . . . . . . . 9 2 ∈ (ℤ‘1)
13 fzss1 13524 . . . . . . . . 9 (2 ∈ (ℤ‘1) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
1412, 13mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
15 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℕ)
16 nnuz 12836 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
1715, 16eleqtrdi 2838 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ (ℤ‘1))
18 eluzfz1 13492 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝐴)))
1917, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 1 ∈ (1...(⌊‘𝐴)))
20 1lt2 12352 . . . . . . . . . . . 12 1 < 2
21 1re 11174 . . . . . . . . . . . . 13 1 ∈ ℝ
22 2re 12260 . . . . . . . . . . . . 13 2 ∈ ℝ
2321, 22ltnlei 11295 . . . . . . . . . . . 12 (1 < 2 ↔ ¬ 2 ≤ 1)
2420, 23mpbi 230 . . . . . . . . . . 11 ¬ 2 ≤ 1
25 elfzle1 13488 . . . . . . . . . . 11 (1 ∈ (2...(⌊‘𝐴)) → 2 ≤ 1)
2624, 25mto 197 . . . . . . . . . 10 ¬ 1 ∈ (2...(⌊‘𝐴))
27 nelne1 3022 . . . . . . . . . 10 ((1 ∈ (1...(⌊‘𝐴)) ∧ ¬ 1 ∈ (2...(⌊‘𝐴))) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2819, 26, 27sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2928necomd 2980 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴)))
30 df-pss 3934 . . . . . . . 8 ((2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)) ↔ ((2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴))))
3114, 29, 30sylanbrc 583 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)))
32 sspsstr 4071 . . . . . . 7 ((((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
3311, 31, 32sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
34 php3 9173 . . . . . 6 (((1...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
3510, 33, 34sylancr 587 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
36 fzfi 13937 . . . . . . 7 (2...(⌊‘𝐴)) ∈ Fin
37 ssfi 9137 . . . . . . 7 (((2...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin)
3836, 11, 37mp2an 692 . . . . . 6 ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin
39 hashsdom 14346 . . . . . 6 ((((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘𝐴)) ∈ Fin) → ((♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴))))
4038, 10, 39mp2an 692 . . . . 5 ((♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
4135, 40sylibr 234 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))))
421flcld 13760 . . . . . . 7 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℤ)
43 ppival2 27038 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) = (♯‘((2...(⌊‘𝐴)) ∩ ℙ)))
4442, 43syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (♯‘((2...(⌊‘𝐴)) ∩ ℙ)))
45 ppifl 27070 . . . . . . 7 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
461, 45syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (π𝐴))
4744, 46eqtr3d 2766 . . . . 5 (𝐴 ∈ ℝ+ → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
4847adantr 480 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
49 rpge0 12965 . . . . . . 7 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
50 flge0nn0 13782 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
511, 49, 50syl2anc 584 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
52 hashfz1 14311 . . . . . 6 ((⌊‘𝐴) ∈ ℕ0 → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5351, 52syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5453adantr 480 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5541, 48, 543brtr3d 5138 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < (⌊‘𝐴))
56 flle 13761 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
579, 56syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ≤ 𝐴)
585, 8, 9, 55, 57ltletrd 11334 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < 𝐴)
5946adantr 480 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π𝐴))
60 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (⌊‘𝐴) = 0)
6160fveq2d 6862 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π‘0))
62 2pos 12289 . . . . . 6 0 < 2
63 0re 11176 . . . . . . 7 0 ∈ ℝ
64 ppieq0 27086 . . . . . . 7 (0 ∈ ℝ → ((π‘0) = 0 ↔ 0 < 2))
6563, 64ax-mp 5 . . . . . 6 ((π‘0) = 0 ↔ 0 < 2)
6662, 65mpbir 231 . . . . 5 (π‘0) = 0
6761, 66eqtrdi 2780 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = 0)
6859, 67eqtr3d 2766 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) = 0)
69 rpgt0 12964 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
7069adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → 0 < 𝐴)
7168, 70eqbrtrd 5129 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) < 𝐴)
72 elnn0 12444 . . 3 ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7351, 72sylib 218 . 2 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7458, 71, 73mpjaodan 960 1 (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cin 3913  wss 3914  wpss 3915   class class class wbr 5107  cfv 6511  (class class class)co 7387  csdm 8917  Fincfn 8918  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  cfl 13752  chash 14295  cprime 16641  πcppi 27004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-icc 13313  df-fz 13469  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642  df-ppi 27010
This theorem is referenced by:  chtppilimlem1  27384
  Copyright terms: Public domain W3C validator