MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiltx Structured version   Visualization version   GIF version

Theorem ppiltx 26326
Description: The prime-counting function π is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppiltx (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)

Proof of Theorem ppiltx
StepHypRef Expression
1 rpre 12738 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 ppicl 26280 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℕ0)
43nn0red 12294 . . . 4 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℝ)
54adantr 481 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) ∈ ℝ)
6 reflcl 13516 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
71, 6syl 17 . . . 4 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
87adantr 481 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
91adantr 481 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ)
10 fzfi 13692 . . . . . 6 (1...(⌊‘𝐴)) ∈ Fin
11 inss1 4162 . . . . . . 7 ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))
12 2eluzge1 12634 . . . . . . . . 9 2 ∈ (ℤ‘1)
13 fzss1 13295 . . . . . . . . 9 (2 ∈ (ℤ‘1) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
1412, 13mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
15 simpr 485 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℕ)
16 nnuz 12621 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
1715, 16eleqtrdi 2849 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ (ℤ‘1))
18 eluzfz1 13263 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝐴)))
1917, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 1 ∈ (1...(⌊‘𝐴)))
20 1lt2 12144 . . . . . . . . . . . 12 1 < 2
21 1re 10975 . . . . . . . . . . . . 13 1 ∈ ℝ
22 2re 12047 . . . . . . . . . . . . 13 2 ∈ ℝ
2321, 22ltnlei 11096 . . . . . . . . . . . 12 (1 < 2 ↔ ¬ 2 ≤ 1)
2420, 23mpbi 229 . . . . . . . . . . 11 ¬ 2 ≤ 1
25 elfzle1 13259 . . . . . . . . . . 11 (1 ∈ (2...(⌊‘𝐴)) → 2 ≤ 1)
2624, 25mto 196 . . . . . . . . . 10 ¬ 1 ∈ (2...(⌊‘𝐴))
27 nelne1 3041 . . . . . . . . . 10 ((1 ∈ (1...(⌊‘𝐴)) ∧ ¬ 1 ∈ (2...(⌊‘𝐴))) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2819, 26, 27sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2928necomd 2999 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴)))
30 df-pss 3906 . . . . . . . 8 ((2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)) ↔ ((2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴))))
3114, 29, 30sylanbrc 583 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)))
32 sspsstr 4040 . . . . . . 7 ((((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
3311, 31, 32sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
34 php3 8995 . . . . . 6 (((1...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
3510, 33, 34sylancr 587 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
36 fzfi 13692 . . . . . . 7 (2...(⌊‘𝐴)) ∈ Fin
37 ssfi 8956 . . . . . . 7 (((2...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin)
3836, 11, 37mp2an 689 . . . . . 6 ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin
39 hashsdom 14096 . . . . . 6 ((((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘𝐴)) ∈ Fin) → ((♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴))))
4038, 10, 39mp2an 689 . . . . 5 ((♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
4135, 40sylibr 233 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))))
421flcld 13518 . . . . . . 7 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℤ)
43 ppival2 26277 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) = (♯‘((2...(⌊‘𝐴)) ∩ ℙ)))
4442, 43syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (♯‘((2...(⌊‘𝐴)) ∩ ℙ)))
45 ppifl 26309 . . . . . . 7 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
461, 45syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (π𝐴))
4744, 46eqtr3d 2780 . . . . 5 (𝐴 ∈ ℝ+ → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
4847adantr 481 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
49 rpge0 12743 . . . . . . 7 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
50 flge0nn0 13540 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
511, 49, 50syl2anc 584 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
52 hashfz1 14060 . . . . . 6 ((⌊‘𝐴) ∈ ℕ0 → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5351, 52syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5453adantr 481 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5541, 48, 543brtr3d 5105 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < (⌊‘𝐴))
56 flle 13519 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
579, 56syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ≤ 𝐴)
585, 8, 9, 55, 57ltletrd 11135 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < 𝐴)
5946adantr 481 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π𝐴))
60 simpr 485 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (⌊‘𝐴) = 0)
6160fveq2d 6778 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π‘0))
62 2pos 12076 . . . . . 6 0 < 2
63 0re 10977 . . . . . . 7 0 ∈ ℝ
64 ppieq0 26325 . . . . . . 7 (0 ∈ ℝ → ((π‘0) = 0 ↔ 0 < 2))
6563, 64ax-mp 5 . . . . . 6 ((π‘0) = 0 ↔ 0 < 2)
6662, 65mpbir 230 . . . . 5 (π‘0) = 0
6761, 66eqtrdi 2794 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = 0)
6859, 67eqtr3d 2780 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) = 0)
69 rpgt0 12742 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
7069adantr 481 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → 0 < 𝐴)
7168, 70eqbrtrd 5096 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) < 𝐴)
72 elnn0 12235 . . 3 ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7351, 72sylib 217 . 2 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7458, 71, 73mpjaodan 956 1 (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cin 3886  wss 3887  wpss 3888   class class class wbr 5074  cfv 6433  (class class class)co 7275  csdm 8732  Fincfn 8733  cr 10870  0cc0 10871  1c1 10872   < clt 11009  cle 11010  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  cfl 13510  chash 14044  cprime 16376  πcppi 26243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-icc 13086  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-prm 16377  df-ppi 26249
This theorem is referenced by:  chtppilimlem1  26621
  Copyright terms: Public domain W3C validator