MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiltx Structured version   Visualization version   GIF version

Theorem ppiltx 27096
Description: The prime-counting function π is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppiltx (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)

Proof of Theorem ppiltx
StepHypRef Expression
1 rpre 13006 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 ppicl 27050 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℕ0)
43nn0red 12555 . . . 4 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℝ)
54adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) ∈ ℝ)
6 reflcl 13785 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
71, 6syl 17 . . . 4 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
87adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
91adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ)
10 fzfi 13961 . . . . . 6 (1...(⌊‘𝐴)) ∈ Fin
11 inss1 4224 . . . . . . 7 ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))
12 2eluzge1 12900 . . . . . . . . 9 2 ∈ (ℤ‘1)
13 fzss1 13564 . . . . . . . . 9 (2 ∈ (ℤ‘1) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
1412, 13mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
15 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℕ)
16 nnuz 12887 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
1715, 16eleqtrdi 2838 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ (ℤ‘1))
18 eluzfz1 13532 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝐴)))
1917, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 1 ∈ (1...(⌊‘𝐴)))
20 1lt2 12405 . . . . . . . . . . . 12 1 < 2
21 1re 11236 . . . . . . . . . . . . 13 1 ∈ ℝ
22 2re 12308 . . . . . . . . . . . . 13 2 ∈ ℝ
2321, 22ltnlei 11357 . . . . . . . . . . . 12 (1 < 2 ↔ ¬ 2 ≤ 1)
2420, 23mpbi 229 . . . . . . . . . . 11 ¬ 2 ≤ 1
25 elfzle1 13528 . . . . . . . . . . 11 (1 ∈ (2...(⌊‘𝐴)) → 2 ≤ 1)
2624, 25mto 196 . . . . . . . . . 10 ¬ 1 ∈ (2...(⌊‘𝐴))
27 nelne1 3034 . . . . . . . . . 10 ((1 ∈ (1...(⌊‘𝐴)) ∧ ¬ 1 ∈ (2...(⌊‘𝐴))) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2819, 26, 27sylancl 585 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2928necomd 2991 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴)))
30 df-pss 3963 . . . . . . . 8 ((2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)) ↔ ((2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴))))
3114, 29, 30sylanbrc 582 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)))
32 sspsstr 4101 . . . . . . 7 ((((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
3311, 31, 32sylancr 586 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
34 php3 9228 . . . . . 6 (((1...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
3510, 33, 34sylancr 586 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
36 fzfi 13961 . . . . . . 7 (2...(⌊‘𝐴)) ∈ Fin
37 ssfi 9189 . . . . . . 7 (((2...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin)
3836, 11, 37mp2an 691 . . . . . 6 ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin
39 hashsdom 14364 . . . . . 6 ((((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘𝐴)) ∈ Fin) → ((♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴))))
4038, 10, 39mp2an 691 . . . . 5 ((♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
4135, 40sylibr 233 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))))
421flcld 13787 . . . . . . 7 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℤ)
43 ppival2 27047 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) = (♯‘((2...(⌊‘𝐴)) ∩ ℙ)))
4442, 43syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (♯‘((2...(⌊‘𝐴)) ∩ ℙ)))
45 ppifl 27079 . . . . . . 7 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
461, 45syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (π𝐴))
4744, 46eqtr3d 2769 . . . . 5 (𝐴 ∈ ℝ+ → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
4847adantr 480 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
49 rpge0 13011 . . . . . . 7 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
50 flge0nn0 13809 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
511, 49, 50syl2anc 583 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
52 hashfz1 14329 . . . . . 6 ((⌊‘𝐴) ∈ ℕ0 → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5351, 52syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5453adantr 480 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5541, 48, 543brtr3d 5173 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < (⌊‘𝐴))
56 flle 13788 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
579, 56syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ≤ 𝐴)
585, 8, 9, 55, 57ltletrd 11396 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < 𝐴)
5946adantr 480 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π𝐴))
60 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (⌊‘𝐴) = 0)
6160fveq2d 6895 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π‘0))
62 2pos 12337 . . . . . 6 0 < 2
63 0re 11238 . . . . . . 7 0 ∈ ℝ
64 ppieq0 27095 . . . . . . 7 (0 ∈ ℝ → ((π‘0) = 0 ↔ 0 < 2))
6563, 64ax-mp 5 . . . . . 6 ((π‘0) = 0 ↔ 0 < 2)
6662, 65mpbir 230 . . . . 5 (π‘0) = 0
6761, 66eqtrdi 2783 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = 0)
6859, 67eqtr3d 2769 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) = 0)
69 rpgt0 13010 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
7069adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → 0 < 𝐴)
7168, 70eqbrtrd 5164 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) < 𝐴)
72 elnn0 12496 . . 3 ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7351, 72sylib 217 . 2 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7458, 71, 73mpjaodan 957 1 (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2935  cin 3943  wss 3944  wpss 3945   class class class wbr 5142  cfv 6542  (class class class)co 7414  csdm 8954  Fincfn 8955  cr 11129  0cc0 11130  1c1 11131   < clt 11270  cle 11271  cn 12234  2c2 12289  0cn0 12494  cz 12580  cuz 12844  +crp 12998  ...cfz 13508  cfl 13779  chash 14313  cprime 16633  πcppi 27013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-xnn0 12567  df-z 12581  df-uz 12845  df-rp 12999  df-icc 13355  df-fz 13509  df-fl 13781  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-dvds 16223  df-prm 16634  df-ppi 27019
This theorem is referenced by:  chtppilimlem1  27393
  Copyright terms: Public domain W3C validator