MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiltx Structured version   Visualization version   GIF version

Theorem ppiltx 27220
Description: The prime-counting function π is strictly less than the identity. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppiltx (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)

Proof of Theorem ppiltx
StepHypRef Expression
1 rpre 13043 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 ppicl 27174 . . . . . 6 (𝐴 ∈ ℝ → (π𝐴) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℕ0)
43nn0red 12588 . . . 4 (𝐴 ∈ ℝ+ → (π𝐴) ∈ ℝ)
54adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) ∈ ℝ)
6 reflcl 13836 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
71, 6syl 17 . . . 4 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
87adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
91adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ)
10 fzfi 14013 . . . . . 6 (1...(⌊‘𝐴)) ∈ Fin
11 inss1 4237 . . . . . . 7 ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))
12 2eluzge1 12936 . . . . . . . . 9 2 ∈ (ℤ‘1)
13 fzss1 13603 . . . . . . . . 9 (2 ∈ (ℤ‘1) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
1412, 13mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)))
15 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ ℕ)
16 nnuz 12921 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
1715, 16eleqtrdi 2851 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ∈ (ℤ‘1))
18 eluzfz1 13571 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝐴)))
1917, 18syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → 1 ∈ (1...(⌊‘𝐴)))
20 1lt2 12437 . . . . . . . . . . . 12 1 < 2
21 1re 11261 . . . . . . . . . . . . 13 1 ∈ ℝ
22 2re 12340 . . . . . . . . . . . . 13 2 ∈ ℝ
2321, 22ltnlei 11382 . . . . . . . . . . . 12 (1 < 2 ↔ ¬ 2 ≤ 1)
2420, 23mpbi 230 . . . . . . . . . . 11 ¬ 2 ≤ 1
25 elfzle1 13567 . . . . . . . . . . 11 (1 ∈ (2...(⌊‘𝐴)) → 2 ≤ 1)
2624, 25mto 197 . . . . . . . . . 10 ¬ 1 ∈ (2...(⌊‘𝐴))
27 nelne1 3039 . . . . . . . . . 10 ((1 ∈ (1...(⌊‘𝐴)) ∧ ¬ 1 ∈ (2...(⌊‘𝐴))) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2819, 26, 27sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (1...(⌊‘𝐴)) ≠ (2...(⌊‘𝐴)))
2928necomd 2996 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴)))
30 df-pss 3971 . . . . . . . 8 ((2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)) ↔ ((2...(⌊‘𝐴)) ⊆ (1...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ≠ (1...(⌊‘𝐴))))
3114, 29, 30sylanbrc 583 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴)))
32 sspsstr 4108 . . . . . . 7 ((((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴)) ∧ (2...(⌊‘𝐴)) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
3311, 31, 32sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴)))
34 php3 9249 . . . . . 6 (((1...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊊ (1...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
3510, 33, 34sylancr 587 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
36 fzfi 14013 . . . . . . 7 (2...(⌊‘𝐴)) ∈ Fin
37 ssfi 9213 . . . . . . 7 (((2...(⌊‘𝐴)) ∈ Fin ∧ ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ (2...(⌊‘𝐴))) → ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin)
3836, 11, 37mp2an 692 . . . . . 6 ((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin
39 hashsdom 14420 . . . . . 6 ((((2...(⌊‘𝐴)) ∩ ℙ) ∈ Fin ∧ (1...(⌊‘𝐴)) ∈ Fin) → ((♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴))))
4038, 10, 39mp2an 692 . . . . 5 ((♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))) ↔ ((2...(⌊‘𝐴)) ∩ ℙ) ≺ (1...(⌊‘𝐴)))
4135, 40sylibr 234 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) < (♯‘(1...(⌊‘𝐴))))
421flcld 13838 . . . . . . 7 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℤ)
43 ppival2 27171 . . . . . . 7 ((⌊‘𝐴) ∈ ℤ → (π‘(⌊‘𝐴)) = (♯‘((2...(⌊‘𝐴)) ∩ ℙ)))
4442, 43syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (♯‘((2...(⌊‘𝐴)) ∩ ℙ)))
45 ppifl 27203 . . . . . . 7 (𝐴 ∈ ℝ → (π‘(⌊‘𝐴)) = (π𝐴))
461, 45syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (π‘(⌊‘𝐴)) = (π𝐴))
4744, 46eqtr3d 2779 . . . . 5 (𝐴 ∈ ℝ+ → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
4847adantr 480 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘((2...(⌊‘𝐴)) ∩ ℙ)) = (π𝐴))
49 rpge0 13048 . . . . . . 7 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
50 flge0nn0 13860 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
511, 49, 50syl2anc 584 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
52 hashfz1 14385 . . . . . 6 ((⌊‘𝐴) ∈ ℕ0 → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5351, 52syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5453adantr 480 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
5541, 48, 543brtr3d 5174 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < (⌊‘𝐴))
56 flle 13839 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
579, 56syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (⌊‘𝐴) ≤ 𝐴)
585, 8, 9, 55, 57ltletrd 11421 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℕ) → (π𝐴) < 𝐴)
5946adantr 480 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π𝐴))
60 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (⌊‘𝐴) = 0)
6160fveq2d 6910 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = (π‘0))
62 2pos 12369 . . . . . 6 0 < 2
63 0re 11263 . . . . . . 7 0 ∈ ℝ
64 ppieq0 27219 . . . . . . 7 (0 ∈ ℝ → ((π‘0) = 0 ↔ 0 < 2))
6563, 64ax-mp 5 . . . . . 6 ((π‘0) = 0 ↔ 0 < 2)
6662, 65mpbir 231 . . . . 5 (π‘0) = 0
6761, 66eqtrdi 2793 . . . 4 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π‘(⌊‘𝐴)) = 0)
6859, 67eqtr3d 2779 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) = 0)
69 rpgt0 13047 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
7069adantr 480 . . 3 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → 0 < 𝐴)
7168, 70eqbrtrd 5165 . 2 ((𝐴 ∈ ℝ+ ∧ (⌊‘𝐴) = 0) → (π𝐴) < 𝐴)
72 elnn0 12528 . . 3 ((⌊‘𝐴) ∈ ℕ0 ↔ ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7351, 72sylib 218 . 2 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) ∈ ℕ ∨ (⌊‘𝐴) = 0))
7458, 71, 73mpjaodan 961 1 (𝐴 ∈ ℝ+ → (π𝐴) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  cin 3950  wss 3951  wpss 3952   class class class wbr 5143  cfv 6561  (class class class)co 7431  csdm 8984  Fincfn 8985  cr 11154  0cc0 11155  1c1 11156   < clt 11295  cle 11296  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  ...cfz 13547  cfl 13830  chash 14369  cprime 16708  πcppi 27137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-icc 13394  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709  df-ppi 27143
This theorem is referenced by:  chtppilimlem1  27517
  Copyright terms: Public domain W3C validator