| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr2 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ordtr2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 6354 | . . . . . . . 8 ⊢ ((Ord 𝐶 ∧ 𝐵 ∈ 𝐶) → Ord 𝐵) | |
| 2 | 1 | ex 412 | . . . . . . 7 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → Ord 𝐵)) |
| 3 | 2 | ancld 550 | . . . . . 6 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → (𝐵 ∈ 𝐶 ∧ Ord 𝐵))) |
| 4 | 3 | anc2li 555 | . . . . 5 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → (Ord 𝐶 ∧ (𝐵 ∈ 𝐶 ∧ Ord 𝐵)))) |
| 5 | ordelpss 6360 | . . . . . . . . . 10 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
| 6 | sspsstr 4071 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
| 7 | 6 | expcom 413 | . . . . . . . . . 10 ⊢ (𝐵 ⊊ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)) |
| 8 | 5, 7 | biimtrdi 253 | . . . . . . . . 9 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶))) |
| 9 | 8 | expcom 413 | . . . . . . . 8 ⊢ (Ord 𝐶 → (Ord 𝐵 → (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)))) |
| 10 | 9 | com23 86 | . . . . . . 7 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → (Ord 𝐵 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)))) |
| 11 | 10 | imp32 418 | . . . . . 6 ⊢ ((Ord 𝐶 ∧ (𝐵 ∈ 𝐶 ∧ Ord 𝐵)) → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)) |
| 12 | 11 | com12 32 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ((Ord 𝐶 ∧ (𝐵 ∈ 𝐶 ∧ Ord 𝐵)) → 𝐴 ⊊ 𝐶)) |
| 13 | 4, 12 | syl9 77 | . . . 4 ⊢ (Ord 𝐶 → (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐶 → 𝐴 ⊊ 𝐶))) |
| 14 | 13 | impd 410 | . . 3 ⊢ (Ord 𝐶 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊊ 𝐶)) |
| 15 | 14 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊊ 𝐶)) |
| 16 | ordelpss 6360 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → (𝐴 ∈ 𝐶 ↔ 𝐴 ⊊ 𝐶)) | |
| 17 | 15, 16 | sylibrd 259 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 ⊊ wpss 3915 Ord word 6331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 |
| This theorem is referenced by: ontr2 6380 ordelinel 6435 smogt 8336 smocdmdom 8337 nnarcl 8580 nnawordex 8601 coftr 10226 noetasuplem4 27648 noetainflem4 27652 hfuni 36172 |
| Copyright terms: Public domain | W3C validator |