MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr2 Structured version   Visualization version   GIF version

Theorem ordtr2 6377
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtr2 ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ordtr2
StepHypRef Expression
1 ordelord 6354 . . . . . . . 8 ((Ord 𝐶𝐵𝐶) → Ord 𝐵)
21ex 412 . . . . . . 7 (Ord 𝐶 → (𝐵𝐶 → Ord 𝐵))
32ancld 550 . . . . . 6 (Ord 𝐶 → (𝐵𝐶 → (𝐵𝐶 ∧ Ord 𝐵)))
43anc2li 555 . . . . 5 (Ord 𝐶 → (𝐵𝐶 → (Ord 𝐶 ∧ (𝐵𝐶 ∧ Ord 𝐵))))
5 ordelpss 6360 . . . . . . . . . 10 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐵𝐶))
6 sspsstr 4071 . . . . . . . . . . 11 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
76expcom 413 . . . . . . . . . 10 (𝐵𝐶 → (𝐴𝐵𝐴𝐶))
85, 7biimtrdi 253 . . . . . . . . 9 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶 → (𝐴𝐵𝐴𝐶)))
98expcom 413 . . . . . . . 8 (Ord 𝐶 → (Ord 𝐵 → (𝐵𝐶 → (𝐴𝐵𝐴𝐶))))
109com23 86 . . . . . . 7 (Ord 𝐶 → (𝐵𝐶 → (Ord 𝐵 → (𝐴𝐵𝐴𝐶))))
1110imp32 418 . . . . . 6 ((Ord 𝐶 ∧ (𝐵𝐶 ∧ Ord 𝐵)) → (𝐴𝐵𝐴𝐶))
1211com12 32 . . . . 5 (𝐴𝐵 → ((Ord 𝐶 ∧ (𝐵𝐶 ∧ Ord 𝐵)) → 𝐴𝐶))
134, 12syl9 77 . . . 4 (Ord 𝐶 → (𝐴𝐵 → (𝐵𝐶𝐴𝐶)))
1413impd 410 . . 3 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
1514adantl 481 . 2 ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
16 ordelpss 6360 . 2 ((Ord 𝐴 ∧ Ord 𝐶) → (𝐴𝐶𝐴𝐶))
1715, 16sylibrd 259 1 ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3914  wpss 3915  Ord word 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335
This theorem is referenced by:  ontr2  6380  ordelinel  6435  smogt  8336  smocdmdom  8337  nnarcl  8580  nnawordex  8601  coftr  10226  noetasuplem4  27648  noetainflem4  27652  hfuni  36172
  Copyright terms: Public domain W3C validator