![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtr2 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ordtr2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 6417 | . . . . . . . 8 ⊢ ((Ord 𝐶 ∧ 𝐵 ∈ 𝐶) → Ord 𝐵) | |
2 | 1 | ex 412 | . . . . . . 7 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → Ord 𝐵)) |
3 | 2 | ancld 550 | . . . . . 6 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → (𝐵 ∈ 𝐶 ∧ Ord 𝐵))) |
4 | 3 | anc2li 555 | . . . . 5 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → (Ord 𝐶 ∧ (𝐵 ∈ 𝐶 ∧ Ord 𝐵)))) |
5 | ordelpss 6423 | . . . . . . . . . 10 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | |
6 | sspsstr 4131 | . . . . . . . . . . 11 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
7 | 6 | expcom 413 | . . . . . . . . . 10 ⊢ (𝐵 ⊊ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)) |
8 | 5, 7 | biimtrdi 253 | . . . . . . . . 9 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶))) |
9 | 8 | expcom 413 | . . . . . . . 8 ⊢ (Ord 𝐶 → (Ord 𝐵 → (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)))) |
10 | 9 | com23 86 | . . . . . . 7 ⊢ (Ord 𝐶 → (𝐵 ∈ 𝐶 → (Ord 𝐵 → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)))) |
11 | 10 | imp32 418 | . . . . . 6 ⊢ ((Ord 𝐶 ∧ (𝐵 ∈ 𝐶 ∧ Ord 𝐵)) → (𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶)) |
12 | 11 | com12 32 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ((Ord 𝐶 ∧ (𝐵 ∈ 𝐶 ∧ Ord 𝐵)) → 𝐴 ⊊ 𝐶)) |
13 | 4, 12 | syl9 77 | . . . 4 ⊢ (Ord 𝐶 → (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐶 → 𝐴 ⊊ 𝐶))) |
14 | 13 | impd 410 | . . 3 ⊢ (Ord 𝐶 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊊ 𝐶)) |
15 | 14 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊊ 𝐶)) |
16 | ordelpss 6423 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → (𝐴 ∈ 𝐶 ↔ 𝐴 ⊊ 𝐶)) | |
17 | 15, 16 | sylibrd 259 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 ⊊ wpss 3977 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 |
This theorem is referenced by: ontr2 6442 ordelinel 6496 smogt 8423 smocdmdom 8424 nnarcl 8672 nnawordex 8693 coftr 10342 noetasuplem4 27799 noetainflem4 27803 hfuni 36148 |
Copyright terms: Public domain | W3C validator |