MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspw Structured version   Visualization version   GIF version

Theorem sspw 4616
Description: The powerclass preserves inclusion. See sspwb 5460 for the biconditional version. (Contributed by NM, 13-Oct-1996.) Extract forward implication of sspwb 5460 since it requires fewer axioms. (Revised by BJ, 13-Apr-2024.)
Assertion
Ref Expression
sspw (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sstr2 4002 . . . 4 (𝑥𝐴 → (𝐴𝐵𝑥𝐵))
21com12 32 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
3 velpw 4610 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
4 velpw 4610 . . 3 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
52, 3, 43imtr4g 296 . 2 (𝐴𝐵 → (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
65ssrdv 4001 1 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3963  𝒫 cpw 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-pw 4607
This theorem is referenced by:  sspwi  4617  sspwd  4618  sspwb  5460  r1pwss  9822  elsigagen2  34129  measres  34203
  Copyright terms: Public domain W3C validator