Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsigagen2 Structured version   Visualization version   GIF version

Theorem elsigagen2 32414
Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Assertion
Ref Expression
elsigagen2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))

Proof of Theorem elsigagen2
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐴𝑉)
21sgsiga 32408 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → (sigaGen‘𝐴) ∈ ran sigAlgebra)
3 sssigagen 32411 . . . 4 (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))
4 sspw 4559 . . . 4 (𝐴 ⊆ (sigaGen‘𝐴) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴))
51, 3, 43syl 18 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴))
6 simp2 1136 . . . 4 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵𝐴)
7 simp3 1137 . . . . 5 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ≼ ω)
8 ctex 8825 . . . . 5 (𝐵 ≼ ω → 𝐵 ∈ V)
9 elpwg 4551 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
107, 8, 93syl 18 . . . 4 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
116, 10mpbird 256 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ 𝒫 𝐴)
125, 11sseldd 3933 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ 𝒫 (sigaGen‘𝐴))
13 sigaclcu 32383 . 2 (((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 (sigaGen‘𝐴) ∧ 𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))
142, 12, 7, 13syl3anc 1370 1 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wcel 2105  Vcvv 3441  wss 3898  𝒫 cpw 4548   cuni 4853   class class class wbr 5093  ran crn 5622  cfv 6480  ωcom 7781  cdom 8803  sigAlgebracsiga 32374  sigaGencsigagen 32404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-int 4896  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-fv 6488  df-dom 8807  df-siga 32375  df-sigagen 32405
This theorem is referenced by:  sxbrsigalem1  32552
  Copyright terms: Public domain W3C validator