![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsigagen2 | Structured version Visualization version GIF version |
Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
Ref | Expression |
---|---|
elsigagen2 | β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β βͺ π΅ β (sigaGenβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β π΄ β π) | |
2 | 1 | sgsiga 33435 | . 2 β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β (sigaGenβπ΄) β βͺ ran sigAlgebra) |
3 | sssigagen 33438 | . . . 4 β’ (π΄ β π β π΄ β (sigaGenβπ΄)) | |
4 | sspw 4614 | . . . 4 β’ (π΄ β (sigaGenβπ΄) β π« π΄ β π« (sigaGenβπ΄)) | |
5 | 1, 3, 4 | 3syl 18 | . . 3 β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β π« π΄ β π« (sigaGenβπ΄)) |
6 | simp2 1136 | . . . 4 β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β π΅ β π΄) | |
7 | simp3 1137 | . . . . 5 β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β π΅ βΌ Ο) | |
8 | ctex 8962 | . . . . 5 β’ (π΅ βΌ Ο β π΅ β V) | |
9 | elpwg 4606 | . . . . 5 β’ (π΅ β V β (π΅ β π« π΄ β π΅ β π΄)) | |
10 | 7, 8, 9 | 3syl 18 | . . . 4 β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β (π΅ β π« π΄ β π΅ β π΄)) |
11 | 6, 10 | mpbird 256 | . . 3 β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β π΅ β π« π΄) |
12 | 5, 11 | sseldd 3984 | . 2 β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β π΅ β π« (sigaGenβπ΄)) |
13 | sigaclcu 33410 | . 2 β’ (((sigaGenβπ΄) β βͺ ran sigAlgebra β§ π΅ β π« (sigaGenβπ΄) β§ π΅ βΌ Ο) β βͺ π΅ β (sigaGenβπ΄)) | |
14 | 2, 12, 7, 13 | syl3anc 1370 | 1 β’ ((π΄ β π β§ π΅ β π΄ β§ π΅ βΌ Ο) β βͺ π΅ β (sigaGenβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1086 β wcel 2105 Vcvv 3473 β wss 3949 π« cpw 4603 βͺ cuni 4909 class class class wbr 5149 ran crn 5678 βcfv 6544 Οcom 7858 βΌ cdom 8940 sigAlgebracsiga 33401 sigaGencsigagen 33431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 df-dom 8944 df-siga 33402 df-sigagen 33432 |
This theorem is referenced by: sxbrsigalem1 33579 |
Copyright terms: Public domain | W3C validator |