| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsigagen2 | Structured version Visualization version GIF version | ||
| Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
| Ref | Expression |
|---|---|
| elsigagen2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐴 ∈ 𝑉) | |
| 2 | 1 | sgsiga 34125 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
| 3 | sssigagen 34128 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (sigaGen‘𝐴)) | |
| 4 | sspw 4570 | . . . 4 ⊢ (𝐴 ⊆ (sigaGen‘𝐴) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴)) | |
| 5 | 1, 3, 4 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴)) |
| 6 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ⊆ 𝐴) | |
| 7 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
| 8 | ctex 8912 | . . . . 5 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
| 9 | elpwg 4562 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
| 11 | 6, 10 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ∈ 𝒫 𝐴) |
| 12 | 5, 11 | sseldd 3944 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ∈ 𝒫 (sigaGen‘𝐴)) |
| 13 | sigaclcu 34100 | . 2 ⊢ (((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 (sigaGen‘𝐴) ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) | |
| 14 | 2, 12, 7, 13 | syl3anc 1373 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 class class class wbr 5102 ran crn 5632 ‘cfv 6499 ωcom 7822 ≼ cdom 8893 sigAlgebracsiga 34091 sigaGencsigagen 34121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-dom 8897 df-siga 34092 df-sigagen 34122 |
| This theorem is referenced by: sxbrsigalem1 34269 |
| Copyright terms: Public domain | W3C validator |