Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsigagen2 Structured version   Visualization version   GIF version

Theorem elsigagen2 33441
Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Assertion
Ref Expression
elsigagen2 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ βˆͺ 𝐡 ∈ (sigaGenβ€˜π΄))

Proof of Theorem elsigagen2
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ 𝐴 ∈ 𝑉)
21sgsiga 33435 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ (sigaGenβ€˜π΄) ∈ βˆͺ ran sigAlgebra)
3 sssigagen 33438 . . . 4 (𝐴 ∈ 𝑉 β†’ 𝐴 βŠ† (sigaGenβ€˜π΄))
4 sspw 4614 . . . 4 (𝐴 βŠ† (sigaGenβ€˜π΄) β†’ 𝒫 𝐴 βŠ† 𝒫 (sigaGenβ€˜π΄))
51, 3, 43syl 18 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ 𝒫 𝐴 βŠ† 𝒫 (sigaGenβ€˜π΄))
6 simp2 1136 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ 𝐡 βŠ† 𝐴)
7 simp3 1137 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ 𝐡 β‰Ό Ο‰)
8 ctex 8962 . . . . 5 (𝐡 β‰Ό Ο‰ β†’ 𝐡 ∈ V)
9 elpwg 4606 . . . . 5 (𝐡 ∈ V β†’ (𝐡 ∈ 𝒫 𝐴 ↔ 𝐡 βŠ† 𝐴))
107, 8, 93syl 18 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ (𝐡 ∈ 𝒫 𝐴 ↔ 𝐡 βŠ† 𝐴))
116, 10mpbird 256 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ 𝐡 ∈ 𝒫 𝐴)
125, 11sseldd 3984 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ 𝐡 ∈ 𝒫 (sigaGenβ€˜π΄))
13 sigaclcu 33410 . 2 (((sigaGenβ€˜π΄) ∈ βˆͺ ran sigAlgebra ∧ 𝐡 ∈ 𝒫 (sigaGenβ€˜π΄) ∧ 𝐡 β‰Ό Ο‰) β†’ βˆͺ 𝐡 ∈ (sigaGenβ€˜π΄))
142, 12, 7, 13syl3anc 1370 1 ((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ό Ο‰) β†’ βˆͺ 𝐡 ∈ (sigaGenβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1086   ∈ wcel 2105  Vcvv 3473   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909   class class class wbr 5149  ran crn 5678  β€˜cfv 6544  Ο‰com 7858   β‰Ό cdom 8940  sigAlgebracsiga 33401  sigaGencsigagen 33431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-dom 8944  df-siga 33402  df-sigagen 33432
This theorem is referenced by:  sxbrsigalem1  33579
  Copyright terms: Public domain W3C validator