Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsigagen2 Structured version   Visualization version   GIF version

Theorem elsigagen2 34172
Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Assertion
Ref Expression
elsigagen2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))

Proof of Theorem elsigagen2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐴𝑉)
21sgsiga 34166 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → (sigaGen‘𝐴) ∈ ran sigAlgebra)
3 sssigagen 34169 . . . 4 (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))
4 sspw 4562 . . . 4 (𝐴 ⊆ (sigaGen‘𝐴) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴))
51, 3, 43syl 18 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴))
6 simp2 1137 . . . 4 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵𝐴)
7 simp3 1138 . . . . 5 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ≼ ω)
8 ctex 8895 . . . . 5 (𝐵 ≼ ω → 𝐵 ∈ V)
9 elpwg 4554 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
107, 8, 93syl 18 . . . 4 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
116, 10mpbird 257 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ 𝒫 𝐴)
125, 11sseldd 3932 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ 𝒫 (sigaGen‘𝐴))
13 sigaclcu 34141 . 2 (((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 (sigaGen‘𝐴) ∧ 𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))
142, 12, 7, 13syl3anc 1373 1 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2113  Vcvv 3438  wss 3899  𝒫 cpw 4551   cuni 4860   class class class wbr 5095  ran crn 5622  cfv 6489  ωcom 7805  cdom 8876  sigAlgebracsiga 34132  sigaGencsigagen 34162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497  df-dom 8880  df-siga 34133  df-sigagen 34163
This theorem is referenced by:  sxbrsigalem1  34309
  Copyright terms: Public domain W3C validator