| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsigagen2 | Structured version Visualization version GIF version | ||
| Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
| Ref | Expression |
|---|---|
| elsigagen2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐴 ∈ 𝑉) | |
| 2 | 1 | sgsiga 34084 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
| 3 | sssigagen 34087 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (sigaGen‘𝐴)) | |
| 4 | sspw 4593 | . . . 4 ⊢ (𝐴 ⊆ (sigaGen‘𝐴) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴)) | |
| 5 | 1, 3, 4 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴)) |
| 6 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ⊆ 𝐴) | |
| 7 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
| 8 | ctex 8987 | . . . . 5 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
| 9 | elpwg 4585 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
| 11 | 6, 10 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ∈ 𝒫 𝐴) |
| 12 | 5, 11 | sseldd 3966 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ∈ 𝒫 (sigaGen‘𝐴)) |
| 13 | sigaclcu 34059 | . 2 ⊢ (((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 (sigaGen‘𝐴) ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) | |
| 14 | 2, 12, 7, 13 | syl3anc 1372 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 𝒫 cpw 4582 ∪ cuni 4889 class class class wbr 5125 ran crn 5668 ‘cfv 6542 ωcom 7870 ≼ cdom 8966 sigAlgebracsiga 34050 sigaGencsigagen 34080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-fv 6550 df-dom 8970 df-siga 34051 df-sigagen 34081 |
| This theorem is referenced by: sxbrsigalem1 34228 |
| Copyright terms: Public domain | W3C validator |