Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsigagen2 | Structured version Visualization version GIF version |
Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
Ref | Expression |
---|---|
elsigagen2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐴 ∈ 𝑉) | |
2 | 1 | sgsiga 32110 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
3 | sssigagen 32113 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (sigaGen‘𝐴)) | |
4 | sspw 4546 | . . . 4 ⊢ (𝐴 ⊆ (sigaGen‘𝐴) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴)) | |
5 | 1, 3, 4 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴)) |
6 | simp2 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ⊆ 𝐴) | |
7 | simp3 1137 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
8 | ctex 8753 | . . . . 5 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
9 | elpwg 4536 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
11 | 6, 10 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ∈ 𝒫 𝐴) |
12 | 5, 11 | sseldd 3922 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ∈ 𝒫 (sigaGen‘𝐴)) |
13 | sigaclcu 32085 | . 2 ⊢ (((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 (sigaGen‘𝐴) ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) | |
14 | 2, 12, 7, 13 | syl3anc 1370 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 ran crn 5590 ‘cfv 6433 ωcom 7712 ≼ cdom 8731 sigAlgebracsiga 32076 sigaGencsigagen 32106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-dom 8735 df-siga 32077 df-sigagen 32107 |
This theorem is referenced by: sxbrsigalem1 32252 |
Copyright terms: Public domain | W3C validator |