Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsigagen2 Structured version   Visualization version   GIF version

Theorem elsigagen2 34129
Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Assertion
Ref Expression
elsigagen2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))

Proof of Theorem elsigagen2
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐴𝑉)
21sgsiga 34123 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → (sigaGen‘𝐴) ∈ ran sigAlgebra)
3 sssigagen 34126 . . . 4 (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))
4 sspw 4616 . . . 4 (𝐴 ⊆ (sigaGen‘𝐴) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴))
51, 3, 43syl 18 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴))
6 simp2 1136 . . . 4 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵𝐴)
7 simp3 1137 . . . . 5 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ≼ ω)
8 ctex 9003 . . . . 5 (𝐵 ≼ ω → 𝐵 ∈ V)
9 elpwg 4608 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
107, 8, 93syl 18 . . . 4 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
116, 10mpbird 257 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ 𝒫 𝐴)
125, 11sseldd 3996 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ 𝒫 (sigaGen‘𝐴))
13 sigaclcu 34098 . 2 (((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 (sigaGen‘𝐴) ∧ 𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))
142, 12, 7, 13syl3anc 1370 1 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  ran crn 5690  cfv 6563  ωcom 7887  cdom 8982  sigAlgebracsiga 34089  sigaGencsigagen 34119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-dom 8986  df-siga 34090  df-sigagen 34120
This theorem is referenced by:  sxbrsigalem1  34267
  Copyright terms: Public domain W3C validator