Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsigagen2 Structured version   Visualization version   GIF version

Theorem elsigagen2 34112
Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Assertion
Ref Expression
elsigagen2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))

Proof of Theorem elsigagen2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐴𝑉)
21sgsiga 34106 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → (sigaGen‘𝐴) ∈ ran sigAlgebra)
3 sssigagen 34109 . . . 4 (𝐴𝑉𝐴 ⊆ (sigaGen‘𝐴))
4 sspw 4633 . . . 4 (𝐴 ⊆ (sigaGen‘𝐴) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴))
51, 3, 43syl 18 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴))
6 simp2 1137 . . . 4 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵𝐴)
7 simp3 1138 . . . . 5 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ≼ ω)
8 ctex 9023 . . . . 5 (𝐵 ≼ ω → 𝐵 ∈ V)
9 elpwg 4625 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
107, 8, 93syl 18 . . . 4 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
116, 10mpbird 257 . . 3 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ 𝒫 𝐴)
125, 11sseldd 4009 . 2 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ 𝒫 (sigaGen‘𝐴))
13 sigaclcu 34081 . 2 (((sigaGen‘𝐴) ∈ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 (sigaGen‘𝐴) ∧ 𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))
142, 12, 7, 13syl3anc 1371 1 ((𝐴𝑉𝐵𝐴𝐵 ≼ ω) → 𝐵 ∈ (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  ran crn 5701  cfv 6573  ωcom 7903  cdom 9001  sigAlgebracsiga 34072  sigaGencsigagen 34102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-dom 9005  df-siga 34073  df-sigagen 34103
This theorem is referenced by:  sxbrsigalem1  34250
  Copyright terms: Public domain W3C validator