![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elelpwi | Structured version Visualization version GIF version |
Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
elelpwi | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4629 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 → 𝐵 ⊆ 𝐶) | |
2 | 1 | sseld 4007 | . 2 ⊢ (𝐵 ∈ 𝒫 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
3 | 2 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-pw 4624 |
This theorem is referenced by: unipw 5470 axdc2lem 10517 axdc3lem4 10522 homarel 18103 txdis 23661 uhgredgrnv 29165 fpwrelmap 32747 insiga 34101 measinblem 34184 ddemeas 34200 imambfm 34227 totprobd 34391 dstrvprob 34436 ballotlem2 34453 requad2 47497 scmsuppss 48097 lincvalsc0 48150 linc0scn0 48152 lincdifsn 48153 linc1 48154 lincsum 48158 lincscm 48159 lcoss 48165 lincext3 48185 islindeps2 48212 itscnhlinecirc02p 48519 |
Copyright terms: Public domain | W3C validator |