MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelpwi Structured version   Visualization version   GIF version

Theorem elelpwi 4576
Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
elelpwi ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)

Proof of Theorem elelpwi
StepHypRef Expression
1 elpwi 4573 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
21sseld 3948 . 2 (𝐵 ∈ 𝒫 𝐶 → (𝐴𝐵𝐴𝐶))
32impcom 407 1 ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  𝒫 cpw 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ss 3934  df-pw 4568
This theorem is referenced by:  unipw  5413  axdc2lem  10408  axdc3lem4  10413  homarel  18005  txdis  23526  uhgredgrnv  29064  fpwrelmap  32663  insiga  34134  measinblem  34217  ddemeas  34233  imambfm  34260  totprobd  34424  dstrvprob  34470  ballotlem2  34487  requad2  47628  scmsuppss  48363  lincvalsc0  48414  linc0scn0  48416  lincdifsn  48417  linc1  48418  lincsum  48422  lincscm  48423  lcoss  48429  lincext3  48449  islindeps2  48476  itscnhlinecirc02p  48778
  Copyright terms: Public domain W3C validator