MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelpwi Structured version   Visualization version   GIF version

Theorem elelpwi 4559
Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
elelpwi ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)

Proof of Theorem elelpwi
StepHypRef Expression
1 elpwi 4556 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
21sseld 3929 . 2 (𝐵 ∈ 𝒫 𝐶 → (𝐴𝐵𝐴𝐶))
32impcom 407 1 ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  𝒫 cpw 4549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ss 3915  df-pw 4551
This theorem is referenced by:  unipw  5393  axdc2lem  10346  axdc3lem4  10351  homarel  17945  txdis  23548  uhgredgrnv  29110  fpwrelmap  32720  insiga  34171  measinblem  34254  ddemeas  34270  imambfm  34296  totprobd  34460  dstrvprob  34506  ballotlem2  34523  requad2  47747  scmsuppss  48495  lincvalsc0  48546  linc0scn0  48548  lincdifsn  48549  linc1  48550  lincsum  48554  lincscm  48555  lcoss  48561  lincext3  48581  islindeps2  48608  itscnhlinecirc02p  48910
  Copyright terms: Public domain W3C validator