Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elelpwi | Structured version Visualization version GIF version |
Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
elelpwi | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4539 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 → 𝐵 ⊆ 𝐶) | |
2 | 1 | sseld 3916 | . 2 ⊢ (𝐵 ∈ 𝒫 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
3 | 2 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: unipw 5360 axdc2lem 10135 axdc3lem4 10140 homarel 17667 txdis 22691 uhgredgrnv 27403 fpwrelmap 30970 insiga 32005 measinblem 32088 ddemeas 32104 imambfm 32129 totprobd 32293 dstrvprob 32338 ballotlem2 32355 requad2 44963 scmsuppss 45596 lincvalsc0 45650 linc0scn0 45652 lincdifsn 45653 linc1 45654 lincsum 45658 lincscm 45659 lcoss 45665 lincext3 45685 islindeps2 45712 itscnhlinecirc02p 46019 |
Copyright terms: Public domain | W3C validator |