| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elelpwi | Structured version Visualization version GIF version | ||
| Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| elelpwi | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4582 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 → 𝐵 ⊆ 𝐶) | |
| 2 | 1 | sseld 3957 | . 2 ⊢ (𝐵 ∈ 𝒫 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| 3 | 2 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: unipw 5425 axdc2lem 10462 axdc3lem4 10467 homarel 18049 txdis 23570 uhgredgrnv 29109 fpwrelmap 32710 insiga 34168 measinblem 34251 ddemeas 34267 imambfm 34294 totprobd 34458 dstrvprob 34504 ballotlem2 34521 requad2 47637 scmsuppss 48346 lincvalsc0 48397 linc0scn0 48399 lincdifsn 48400 linc1 48401 lincsum 48405 lincscm 48406 lcoss 48412 lincext3 48432 islindeps2 48459 itscnhlinecirc02p 48765 |
| Copyright terms: Public domain | W3C validator |