MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelpwi Structured version   Visualization version   GIF version

Theorem elelpwi 4545
Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
elelpwi ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)

Proof of Theorem elelpwi
StepHypRef Expression
1 elpwi 4542 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
21sseld 3920 . 2 (𝐵 ∈ 𝒫 𝐶 → (𝐴𝐵𝐴𝐶))
32impcom 408 1 ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535
This theorem is referenced by:  unipw  5366  axdc2lem  10204  axdc3lem4  10209  homarel  17751  txdis  22783  uhgredgrnv  27500  fpwrelmap  31068  insiga  32105  measinblem  32188  ddemeas  32204  imambfm  32229  totprobd  32393  dstrvprob  32438  ballotlem2  32455  requad2  45075  scmsuppss  45708  lincvalsc0  45762  linc0scn0  45764  lincdifsn  45765  linc1  45766  lincsum  45770  lincscm  45771  lcoss  45777  lincext3  45797  islindeps2  45824  itscnhlinecirc02p  46131
  Copyright terms: Public domain W3C validator