MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelpwi Structured version   Visualization version   GIF version

Theorem elelpwi 4632
Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
elelpwi ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)

Proof of Theorem elelpwi
StepHypRef Expression
1 elpwi 4629 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
21sseld 4007 . 2 (𝐵 ∈ 𝒫 𝐶 → (𝐴𝐵𝐴𝐶))
32impcom 407 1 ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  𝒫 cpw 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ss 3993  df-pw 4624
This theorem is referenced by:  unipw  5470  axdc2lem  10517  axdc3lem4  10522  homarel  18103  txdis  23661  uhgredgrnv  29165  fpwrelmap  32747  insiga  34101  measinblem  34184  ddemeas  34200  imambfm  34227  totprobd  34391  dstrvprob  34436  ballotlem2  34453  requad2  47497  scmsuppss  48097  lincvalsc0  48150  linc0scn0  48152  lincdifsn  48153  linc1  48154  lincsum  48158  lincscm  48159  lcoss  48165  lincext3  48185  islindeps2  48212  itscnhlinecirc02p  48519
  Copyright terms: Public domain W3C validator