MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelpwi Structured version   Visualization version   GIF version

Theorem elelpwi 4585
Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
elelpwi ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)

Proof of Theorem elelpwi
StepHypRef Expression
1 elpwi 4582 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
21sseld 3957 . 2 (𝐵 ∈ 𝒫 𝐶 → (𝐴𝐵𝐴𝐶))
32impcom 407 1 ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  𝒫 cpw 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ss 3943  df-pw 4577
This theorem is referenced by:  unipw  5425  axdc2lem  10462  axdc3lem4  10467  homarel  18049  txdis  23570  uhgredgrnv  29109  fpwrelmap  32710  insiga  34168  measinblem  34251  ddemeas  34267  imambfm  34294  totprobd  34458  dstrvprob  34504  ballotlem2  34521  requad2  47637  scmsuppss  48346  lincvalsc0  48397  linc0scn0  48399  lincdifsn  48400  linc1  48401  lincsum  48405  lincscm  48406  lcoss  48412  lincext3  48432  islindeps2  48459  itscnhlinecirc02p  48765
  Copyright terms: Public domain W3C validator