Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elelpwi | Structured version Visualization version GIF version |
Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
elelpwi | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4507 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 → 𝐵 ⊆ 𝐶) | |
2 | 1 | sseld 3894 | . 2 ⊢ (𝐵 ∈ 𝒫 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
3 | 2 | impcom 411 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2112 𝒫 cpw 4498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-in 3868 df-ss 3878 df-pw 4500 |
This theorem is referenced by: unipw 5316 axdc2lem 9922 axdc3lem4 9927 homarel 17377 txdis 22347 uhgredgrnv 27037 fpwrelmap 30606 insiga 31638 measinblem 31721 ddemeas 31737 imambfm 31762 totprobd 31926 dstrvprob 31971 ballotlem2 31988 requad2 44568 scmsuppss 45201 lincvalsc0 45255 linc0scn0 45257 lincdifsn 45258 linc1 45259 lincsum 45263 lincscm 45264 lcoss 45270 lincext3 45290 islindeps2 45317 itscnhlinecirc02p 45624 |
Copyright terms: Public domain | W3C validator |