MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelpwi Structured version   Visualization version   GIF version

Theorem elelpwi 4542
Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
elelpwi ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)

Proof of Theorem elelpwi
StepHypRef Expression
1 elpwi 4539 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
21sseld 3916 . 2 (𝐵 ∈ 𝒫 𝐶 → (𝐴𝐵𝐴𝐶))
32impcom 407 1 ((𝐴𝐵𝐵 ∈ 𝒫 𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  unipw  5360  axdc2lem  10135  axdc3lem4  10140  homarel  17667  txdis  22691  uhgredgrnv  27403  fpwrelmap  30970  insiga  32005  measinblem  32088  ddemeas  32104  imambfm  32129  totprobd  32293  dstrvprob  32338  ballotlem2  32355  requad2  44963  scmsuppss  45596  lincvalsc0  45650  linc0scn0  45652  lincdifsn  45653  linc1  45654  lincsum  45658  lincscm  45659  lcoss  45665  lincext3  45685  islindeps2  45712  itscnhlinecirc02p  46019
  Copyright terms: Public domain W3C validator