| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elelpwi | Structured version Visualization version GIF version | ||
| Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| elelpwi | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4557 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 → 𝐵 ⊆ 𝐶) | |
| 2 | 1 | sseld 3933 | . 2 ⊢ (𝐵 ∈ 𝒫 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| 3 | 2 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3919 df-pw 4552 |
| This theorem is referenced by: unipw 5391 axdc2lem 10336 axdc3lem4 10341 homarel 17940 txdis 23545 uhgredgrnv 29106 fpwrelmap 32711 insiga 34145 measinblem 34228 ddemeas 34244 imambfm 34270 totprobd 34434 dstrvprob 34480 ballotlem2 34497 requad2 47653 scmsuppss 48401 lincvalsc0 48452 linc0scn0 48454 lincdifsn 48455 linc1 48456 lincsum 48460 lincscm 48461 lcoss 48467 lincext3 48487 islindeps2 48514 itscnhlinecirc02p 48816 |
| Copyright terms: Public domain | W3C validator |