| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elelpwi | Structured version Visualization version GIF version | ||
| Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| elelpwi | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4570 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 → 𝐵 ⊆ 𝐶) | |
| 2 | 1 | sseld 3945 | . 2 ⊢ (𝐵 ∈ 𝒫 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| 3 | 2 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: unipw 5410 axdc2lem 10401 axdc3lem4 10406 homarel 17998 txdis 23519 uhgredgrnv 29057 fpwrelmap 32656 insiga 34127 measinblem 34210 ddemeas 34226 imambfm 34253 totprobd 34417 dstrvprob 34463 ballotlem2 34480 requad2 47624 scmsuppss 48359 lincvalsc0 48410 linc0scn0 48412 lincdifsn 48413 linc1 48414 lincsum 48418 lincscm 48419 lcoss 48425 lincext3 48445 islindeps2 48472 itscnhlinecirc02p 48774 |
| Copyright terms: Public domain | W3C validator |