| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elelpwi | Structured version Visualization version GIF version | ||
| Description: If 𝐴 belongs to a part of 𝐶, then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| elelpwi | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4556 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 → 𝐵 ⊆ 𝐶) | |
| 2 | 1 | sseld 3929 | . 2 ⊢ (𝐵 ∈ 𝒫 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
| 3 | 2 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ss 3915 df-pw 4551 |
| This theorem is referenced by: unipw 5393 axdc2lem 10346 axdc3lem4 10351 homarel 17945 txdis 23548 uhgredgrnv 29110 fpwrelmap 32720 insiga 34171 measinblem 34254 ddemeas 34270 imambfm 34296 totprobd 34460 dstrvprob 34506 ballotlem2 34523 requad2 47747 scmsuppss 48495 lincvalsc0 48546 linc0scn0 48548 lincdifsn 48549 linc1 48550 lincsum 48554 lincscm 48555 lcoss 48561 lincext3 48581 islindeps2 48608 itscnhlinecirc02p 48910 |
| Copyright terms: Public domain | W3C validator |