MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Structured version   Visualization version   GIF version

Theorem r1pwss 9744
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))

Proof of Theorem r1pwss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9726 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . . . 6 Lim dom 𝑅1
3 limord 6396 . . . . . 6 (Lim dom 𝑅1 → Ord dom 𝑅1)
42, 3ax-mp 5 . . . . 5 Ord dom 𝑅1
5 ordsson 7762 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
64, 5ax-mp 5 . . . 4 dom 𝑅1 ⊆ On
7 elfvdm 6898 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
86, 7sselid 3947 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
9 onzsl 7825 . . 3 (𝐵 ∈ On ↔ (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
108, 9sylib 218 . 2 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
11 noel 4304 . . . . 5 ¬ 𝐴 ∈ ∅
12 fveq2 6861 . . . . . . . 8 (𝐵 = ∅ → (𝑅1𝐵) = (𝑅1‘∅))
13 r10 9728 . . . . . . . 8 (𝑅1‘∅) = ∅
1412, 13eqtrdi 2781 . . . . . . 7 (𝐵 = ∅ → (𝑅1𝐵) = ∅)
1514eleq2d 2815 . . . . . 6 (𝐵 = ∅ → (𝐴 ∈ (𝑅1𝐵) ↔ 𝐴 ∈ ∅))
1615biimpcd 249 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝐴 ∈ ∅))
1711, 16mtoi 199 . . . 4 (𝐴 ∈ (𝑅1𝐵) → ¬ 𝐵 = ∅)
1817pm2.21d 121 . . 3 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
19 simpl 482 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ (𝑅1𝐵))
20 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 = suc 𝑥)
2120fveq2d 6865 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = (𝑅1‘suc 𝑥))
227adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 ∈ dom 𝑅1)
2320, 22eqeltrrd 2830 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
24 limsuc 7828 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
252, 24ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2623, 25sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
27 r1sucg 9729 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2921, 28eqtrd 2765 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = 𝒫 (𝑅1𝑥))
3019, 29eleqtrd 2831 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ 𝒫 (𝑅1𝑥))
31 elpwi 4573 . . . . . . 7 (𝐴 ∈ 𝒫 (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥))
32 sspw 4577 . . . . . . 7 (𝐴 ⊆ (𝑅1𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3330, 31, 323syl 18 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3433, 29sseqtrrd 3987 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
3534ex 412 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
3635rexlimdvw 3140 . . 3 (𝐴 ∈ (𝑅1𝐵) → (∃𝑥 ∈ On 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
37 r1tr 9736 . . . . . 6 Tr (𝑅1𝐵)
38 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 ∈ (𝑅1𝐵))
39 r1limg 9731 . . . . . . . . . . . 12 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
407, 39sylan 580 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
4138, 40eleqtrd 2831 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 𝑥𝐵 (𝑅1𝑥))
42 eliun 4962 . . . . . . . . . 10 (𝐴 𝑥𝐵 (𝑅1𝑥) ↔ ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
4341, 42sylib 218 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
44 simprl 770 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥𝐵)
45 limsuc 7828 . . . . . . . . . . . . 13 (Lim 𝐵 → (𝑥𝐵 ↔ suc 𝑥𝐵))
4645ad2antlr 727 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑥𝐵 ↔ suc 𝑥𝐵))
4744, 46mpbid 232 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥𝐵)
48 limsuc 7828 . . . . . . . . . . . 12 (Lim 𝐵 → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
4948ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
5047, 49mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc suc 𝑥𝐵)
51 r1tr 9736 . . . . . . . . . . . . . . 15 Tr (𝑅1𝑥)
52 simprr 772 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ∈ (𝑅1𝑥))
53 trss 5228 . . . . . . . . . . . . . . 15 (Tr (𝑅1𝑥) → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥)))
5451, 52, 53mpsyl 68 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ⊆ (𝑅1𝑥))
5554, 32syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
567ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐵 ∈ dom 𝑅1)
57 ordtr1 6379 . . . . . . . . . . . . . . . 16 (Ord dom 𝑅1 → ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
584, 57ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5944, 56, 58syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥 ∈ dom 𝑅1)
6059, 27syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6155, 60sseqtrrd 3987 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
62 fvex 6874 . . . . . . . . . . . . 13 (𝑅1‘suc 𝑥) ∈ V
6362elpw2 5292 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
6461, 63sylibr 234 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥))
6559, 25sylib 218 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥 ∈ dom 𝑅1)
66 r1sucg 9729 . . . . . . . . . . . 12 (suc 𝑥 ∈ dom 𝑅1 → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6765, 66syl 17 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6864, 67eleqtrrd 2832 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥))
69 fveq2 6861 . . . . . . . . . . . 12 (𝑦 = suc suc 𝑥 → (𝑅1𝑦) = (𝑅1‘suc suc 𝑥))
7069eleq2d 2815 . . . . . . . . . . 11 (𝑦 = suc suc 𝑥 → (𝒫 𝐴 ∈ (𝑅1𝑦) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)))
7170rspcev 3591 . . . . . . . . . 10 ((suc suc 𝑥𝐵 ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7250, 68, 71syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7343, 72rexlimddv 3141 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
74 eliun 4962 . . . . . . . 8 (𝒫 𝐴 𝑦𝐵 (𝑅1𝑦) ↔ ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7573, 74sylibr 234 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 𝑦𝐵 (𝑅1𝑦))
76 r1limg 9731 . . . . . . . 8 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
777, 76sylan 580 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
7875, 77eleqtrrd 2832 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ∈ (𝑅1𝐵))
79 trss 5228 . . . . . 6 (Tr (𝑅1𝐵) → (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8037, 78, 79mpsyl 68 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
8180ex 412 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (Lim 𝐵 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8281adantld 490 . . 3 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 ∈ V ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8318, 36, 823jaod 1431 . 2 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8410, 83mpd 15 1 (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   ciun 4958  Tr wtr 5217  dom cdm 5641  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  Fun wfun 6508  cfv 6514  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724
This theorem is referenced by:  r1sscl  9745
  Copyright terms: Public domain W3C validator