MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Structured version   Visualization version   GIF version

Theorem r1pwss 9680
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))

Proof of Theorem r1pwss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9662 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . . . 6 Lim dom 𝑅1
3 limord 6368 . . . . . 6 (Lim dom 𝑅1 → Ord dom 𝑅1)
42, 3ax-mp 5 . . . . 5 Ord dom 𝑅1
5 ordsson 7719 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
64, 5ax-mp 5 . . . 4 dom 𝑅1 ⊆ On
7 elfvdm 6857 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
86, 7sselid 3933 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
9 onzsl 7779 . . 3 (𝐵 ∈ On ↔ (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
108, 9sylib 218 . 2 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
11 noel 4289 . . . . 5 ¬ 𝐴 ∈ ∅
12 fveq2 6822 . . . . . . . 8 (𝐵 = ∅ → (𝑅1𝐵) = (𝑅1‘∅))
13 r10 9664 . . . . . . . 8 (𝑅1‘∅) = ∅
1412, 13eqtrdi 2780 . . . . . . 7 (𝐵 = ∅ → (𝑅1𝐵) = ∅)
1514eleq2d 2814 . . . . . 6 (𝐵 = ∅ → (𝐴 ∈ (𝑅1𝐵) ↔ 𝐴 ∈ ∅))
1615biimpcd 249 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝐴 ∈ ∅))
1711, 16mtoi 199 . . . 4 (𝐴 ∈ (𝑅1𝐵) → ¬ 𝐵 = ∅)
1817pm2.21d 121 . . 3 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
19 simpl 482 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ (𝑅1𝐵))
20 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 = suc 𝑥)
2120fveq2d 6826 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = (𝑅1‘suc 𝑥))
227adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 ∈ dom 𝑅1)
2320, 22eqeltrrd 2829 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
24 limsuc 7782 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
252, 24ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2623, 25sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
27 r1sucg 9665 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2921, 28eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = 𝒫 (𝑅1𝑥))
3019, 29eleqtrd 2830 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ 𝒫 (𝑅1𝑥))
31 elpwi 4558 . . . . . . 7 (𝐴 ∈ 𝒫 (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥))
32 sspw 4562 . . . . . . 7 (𝐴 ⊆ (𝑅1𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3330, 31, 323syl 18 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3433, 29sseqtrrd 3973 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
3534ex 412 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
3635rexlimdvw 3135 . . 3 (𝐴 ∈ (𝑅1𝐵) → (∃𝑥 ∈ On 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
37 r1tr 9672 . . . . . 6 Tr (𝑅1𝐵)
38 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 ∈ (𝑅1𝐵))
39 r1limg 9667 . . . . . . . . . . . 12 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
407, 39sylan 580 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
4138, 40eleqtrd 2830 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 𝑥𝐵 (𝑅1𝑥))
42 eliun 4945 . . . . . . . . . 10 (𝐴 𝑥𝐵 (𝑅1𝑥) ↔ ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
4341, 42sylib 218 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
44 simprl 770 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥𝐵)
45 limsuc 7782 . . . . . . . . . . . . 13 (Lim 𝐵 → (𝑥𝐵 ↔ suc 𝑥𝐵))
4645ad2antlr 727 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑥𝐵 ↔ suc 𝑥𝐵))
4744, 46mpbid 232 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥𝐵)
48 limsuc 7782 . . . . . . . . . . . 12 (Lim 𝐵 → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
4948ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
5047, 49mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc suc 𝑥𝐵)
51 r1tr 9672 . . . . . . . . . . . . . . 15 Tr (𝑅1𝑥)
52 simprr 772 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ∈ (𝑅1𝑥))
53 trss 5209 . . . . . . . . . . . . . . 15 (Tr (𝑅1𝑥) → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥)))
5451, 52, 53mpsyl 68 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ⊆ (𝑅1𝑥))
5554, 32syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
567ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐵 ∈ dom 𝑅1)
57 ordtr1 6351 . . . . . . . . . . . . . . . 16 (Ord dom 𝑅1 → ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
584, 57ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5944, 56, 58syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥 ∈ dom 𝑅1)
6059, 27syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6155, 60sseqtrrd 3973 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
62 fvex 6835 . . . . . . . . . . . . 13 (𝑅1‘suc 𝑥) ∈ V
6362elpw2 5273 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
6461, 63sylibr 234 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥))
6559, 25sylib 218 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥 ∈ dom 𝑅1)
66 r1sucg 9665 . . . . . . . . . . . 12 (suc 𝑥 ∈ dom 𝑅1 → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6765, 66syl 17 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6864, 67eleqtrrd 2831 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥))
69 fveq2 6822 . . . . . . . . . . . 12 (𝑦 = suc suc 𝑥 → (𝑅1𝑦) = (𝑅1‘suc suc 𝑥))
7069eleq2d 2814 . . . . . . . . . . 11 (𝑦 = suc suc 𝑥 → (𝒫 𝐴 ∈ (𝑅1𝑦) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)))
7170rspcev 3577 . . . . . . . . . 10 ((suc suc 𝑥𝐵 ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7250, 68, 71syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7343, 72rexlimddv 3136 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
74 eliun 4945 . . . . . . . 8 (𝒫 𝐴 𝑦𝐵 (𝑅1𝑦) ↔ ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7573, 74sylibr 234 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 𝑦𝐵 (𝑅1𝑦))
76 r1limg 9667 . . . . . . . 8 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
777, 76sylan 580 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
7875, 77eleqtrrd 2831 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ∈ (𝑅1𝐵))
79 trss 5209 . . . . . 6 (Tr (𝑅1𝐵) → (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8037, 78, 79mpsyl 68 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
8180ex 412 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (Lim 𝐵 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8281adantld 490 . . 3 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 ∈ V ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8318, 36, 823jaod 1431 . 2 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8410, 83mpd 15 1 (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551   ciun 4941  Tr wtr 5199  dom cdm 5619  Ord word 6306  Oncon0 6307  Lim wlim 6308  suc csuc 6309  Fun wfun 6476  cfv 6482  𝑅1cr1 9658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660
This theorem is referenced by:  r1sscl  9681
  Copyright terms: Public domain W3C validator