MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Structured version   Visualization version   GIF version

Theorem r1pwss 9821
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))

Proof of Theorem r1pwss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9803 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . . . 6 Lim dom 𝑅1
3 limord 6445 . . . . . 6 (Lim dom 𝑅1 → Ord dom 𝑅1)
42, 3ax-mp 5 . . . . 5 Ord dom 𝑅1
5 ordsson 7801 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
64, 5ax-mp 5 . . . 4 dom 𝑅1 ⊆ On
7 elfvdm 6943 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
86, 7sselid 3992 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
9 onzsl 7866 . . 3 (𝐵 ∈ On ↔ (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
108, 9sylib 218 . 2 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
11 noel 4343 . . . . 5 ¬ 𝐴 ∈ ∅
12 fveq2 6906 . . . . . . . 8 (𝐵 = ∅ → (𝑅1𝐵) = (𝑅1‘∅))
13 r10 9805 . . . . . . . 8 (𝑅1‘∅) = ∅
1412, 13eqtrdi 2790 . . . . . . 7 (𝐵 = ∅ → (𝑅1𝐵) = ∅)
1514eleq2d 2824 . . . . . 6 (𝐵 = ∅ → (𝐴 ∈ (𝑅1𝐵) ↔ 𝐴 ∈ ∅))
1615biimpcd 249 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝐴 ∈ ∅))
1711, 16mtoi 199 . . . 4 (𝐴 ∈ (𝑅1𝐵) → ¬ 𝐵 = ∅)
1817pm2.21d 121 . . 3 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
19 simpl 482 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ (𝑅1𝐵))
20 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 = suc 𝑥)
2120fveq2d 6910 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = (𝑅1‘suc 𝑥))
227adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 ∈ dom 𝑅1)
2320, 22eqeltrrd 2839 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
24 limsuc 7869 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
252, 24ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2623, 25sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
27 r1sucg 9806 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2921, 28eqtrd 2774 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = 𝒫 (𝑅1𝑥))
3019, 29eleqtrd 2840 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ 𝒫 (𝑅1𝑥))
31 elpwi 4611 . . . . . . 7 (𝐴 ∈ 𝒫 (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥))
32 sspw 4615 . . . . . . 7 (𝐴 ⊆ (𝑅1𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3330, 31, 323syl 18 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3433, 29sseqtrrd 4036 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
3534ex 412 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
3635rexlimdvw 3157 . . 3 (𝐴 ∈ (𝑅1𝐵) → (∃𝑥 ∈ On 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
37 r1tr 9813 . . . . . 6 Tr (𝑅1𝐵)
38 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 ∈ (𝑅1𝐵))
39 r1limg 9808 . . . . . . . . . . . 12 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
407, 39sylan 580 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
4138, 40eleqtrd 2840 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 𝑥𝐵 (𝑅1𝑥))
42 eliun 4999 . . . . . . . . . 10 (𝐴 𝑥𝐵 (𝑅1𝑥) ↔ ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
4341, 42sylib 218 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
44 simprl 771 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥𝐵)
45 limsuc 7869 . . . . . . . . . . . . 13 (Lim 𝐵 → (𝑥𝐵 ↔ suc 𝑥𝐵))
4645ad2antlr 727 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑥𝐵 ↔ suc 𝑥𝐵))
4744, 46mpbid 232 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥𝐵)
48 limsuc 7869 . . . . . . . . . . . 12 (Lim 𝐵 → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
4948ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
5047, 49mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc suc 𝑥𝐵)
51 r1tr 9813 . . . . . . . . . . . . . . 15 Tr (𝑅1𝑥)
52 simprr 773 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ∈ (𝑅1𝑥))
53 trss 5275 . . . . . . . . . . . . . . 15 (Tr (𝑅1𝑥) → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥)))
5451, 52, 53mpsyl 68 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ⊆ (𝑅1𝑥))
5554, 32syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
567ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐵 ∈ dom 𝑅1)
57 ordtr1 6428 . . . . . . . . . . . . . . . 16 (Ord dom 𝑅1 → ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
584, 57ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5944, 56, 58syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥 ∈ dom 𝑅1)
6059, 27syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6155, 60sseqtrrd 4036 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
62 fvex 6919 . . . . . . . . . . . . 13 (𝑅1‘suc 𝑥) ∈ V
6362elpw2 5339 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
6461, 63sylibr 234 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥))
6559, 25sylib 218 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥 ∈ dom 𝑅1)
66 r1sucg 9806 . . . . . . . . . . . 12 (suc 𝑥 ∈ dom 𝑅1 → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6765, 66syl 17 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6864, 67eleqtrrd 2841 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥))
69 fveq2 6906 . . . . . . . . . . . 12 (𝑦 = suc suc 𝑥 → (𝑅1𝑦) = (𝑅1‘suc suc 𝑥))
7069eleq2d 2824 . . . . . . . . . . 11 (𝑦 = suc suc 𝑥 → (𝒫 𝐴 ∈ (𝑅1𝑦) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)))
7170rspcev 3621 . . . . . . . . . 10 ((suc suc 𝑥𝐵 ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7250, 68, 71syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7343, 72rexlimddv 3158 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
74 eliun 4999 . . . . . . . 8 (𝒫 𝐴 𝑦𝐵 (𝑅1𝑦) ↔ ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7573, 74sylibr 234 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 𝑦𝐵 (𝑅1𝑦))
76 r1limg 9808 . . . . . . . 8 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
777, 76sylan 580 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
7875, 77eleqtrrd 2841 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ∈ (𝑅1𝐵))
79 trss 5275 . . . . . 6 (Tr (𝑅1𝐵) → (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8037, 78, 79mpsyl 68 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
8180ex 412 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (Lim 𝐵 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8281adantld 490 . . 3 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 ∈ V ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8318, 36, 823jaod 1428 . 2 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8410, 83mpd 15 1 (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1536  wcel 2105  wrex 3067  Vcvv 3477  wss 3962  c0 4338  𝒫 cpw 4604   ciun 4995  Tr wtr 5264  dom cdm 5688  Ord word 6384  Oncon0 6385  Lim wlim 6386  suc csuc 6387  Fun wfun 6556  cfv 6562  𝑅1cr1 9799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-r1 9801
This theorem is referenced by:  r1sscl  9822
  Copyright terms: Public domain W3C validator