Step | Hyp | Ref
| Expression |
1 | | r1funlim 9455 |
. . . . . . 7
⊢ (Fun
𝑅1 ∧ Lim dom 𝑅1) |
2 | 1 | simpri 485 |
. . . . . 6
⊢ Lim dom
𝑅1 |
3 | | limord 6310 |
. . . . . 6
⊢ (Lim dom
𝑅1 → Ord dom 𝑅1) |
4 | 2, 3 | ax-mp 5 |
. . . . 5
⊢ Ord dom
𝑅1 |
5 | | ordsson 7610 |
. . . . 5
⊢ (Ord dom
𝑅1 → dom 𝑅1 ⊆
On) |
6 | 4, 5 | ax-mp 5 |
. . . 4
⊢ dom
𝑅1 ⊆ On |
7 | | elfvdm 6788 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘𝐵) → 𝐵 ∈ dom
𝑅1) |
8 | 6, 7 | sselid 3915 |
. . 3
⊢ (𝐴 ∈
(𝑅1‘𝐵) → 𝐵 ∈ On) |
9 | | onzsl 7668 |
. . 3
⊢ (𝐵 ∈ On ↔ (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵))) |
10 | 8, 9 | sylib 217 |
. 2
⊢ (𝐴 ∈
(𝑅1‘𝐵) → (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵))) |
11 | | noel 4261 |
. . . . 5
⊢ ¬
𝐴 ∈
∅ |
12 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝐵 = ∅ →
(𝑅1‘𝐵) =
(𝑅1‘∅)) |
13 | | r10 9457 |
. . . . . . . 8
⊢
(𝑅1‘∅) = ∅ |
14 | 12, 13 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝐵 = ∅ →
(𝑅1‘𝐵) = ∅) |
15 | 14 | eleq2d 2824 |
. . . . . 6
⊢ (𝐵 = ∅ → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝐴 ∈ ∅)) |
16 | 15 | biimpcd 248 |
. . . . 5
⊢ (𝐴 ∈
(𝑅1‘𝐵) → (𝐵 = ∅ → 𝐴 ∈ ∅)) |
17 | 11, 16 | mtoi 198 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘𝐵) → ¬ 𝐵 = ∅) |
18 | 17 | pm2.21d 121 |
. . 3
⊢ (𝐴 ∈
(𝑅1‘𝐵) → (𝐵 = ∅ → 𝒫 𝐴 ⊆
(𝑅1‘𝐵))) |
19 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ (𝑅1‘𝐵)) |
20 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 = suc 𝑥) |
21 | 20 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1‘𝐵) =
(𝑅1‘suc 𝑥)) |
22 | 7 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 ∈ dom
𝑅1) |
23 | 20, 22 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → suc 𝑥 ∈ dom
𝑅1) |
24 | | limsuc 7671 |
. . . . . . . . . . . 12
⊢ (Lim dom
𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc
𝑥 ∈ dom
𝑅1)) |
25 | 2, 24 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ dom
𝑅1 ↔ suc 𝑥 ∈ dom
𝑅1) |
26 | 23, 25 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → 𝑥 ∈ dom
𝑅1) |
27 | | r1sucg 9458 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom
𝑅1 → (𝑅1‘suc 𝑥) = 𝒫
(𝑅1‘𝑥)) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1‘suc
𝑥) = 𝒫
(𝑅1‘𝑥)) |
29 | 21, 28 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1‘𝐵) = 𝒫
(𝑅1‘𝑥)) |
30 | 19, 29 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ 𝒫
(𝑅1‘𝑥)) |
31 | | elpwi 4539 |
. . . . . . 7
⊢ (𝐴 ∈ 𝒫
(𝑅1‘𝑥) → 𝐴 ⊆ (𝑅1‘𝑥)) |
32 | | sspw 4543 |
. . . . . . 7
⊢ (𝐴 ⊆
(𝑅1‘𝑥) → 𝒫 𝐴 ⊆ 𝒫
(𝑅1‘𝑥)) |
33 | 30, 31, 32 | 3syl 18 |
. . . . . 6
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ 𝒫
(𝑅1‘𝑥)) |
34 | 33, 29 | sseqtrrd 3958 |
. . . . 5
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵)) |
35 | 34 | ex 412 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘𝐵) → (𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1‘𝐵))) |
36 | 35 | rexlimdvw 3218 |
. . 3
⊢ (𝐴 ∈
(𝑅1‘𝐵) → (∃𝑥 ∈ On 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1‘𝐵))) |
37 | | r1tr 9465 |
. . . . . 6
⊢ Tr
(𝑅1‘𝐵) |
38 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) → 𝐴 ∈ (𝑅1‘𝐵)) |
39 | | r1limg 9460 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ dom
𝑅1 ∧ Lim 𝐵) → (𝑅1‘𝐵) = ∪ 𝑥 ∈ 𝐵 (𝑅1‘𝑥)) |
40 | 7, 39 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) → (𝑅1‘𝐵) = ∪ 𝑥 ∈ 𝐵 (𝑅1‘𝑥)) |
41 | 38, 40 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) → 𝐴 ∈ ∪
𝑥 ∈ 𝐵 (𝑅1‘𝑥)) |
42 | | eliun 4925 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ∪ 𝑥 ∈ 𝐵 (𝑅1‘𝑥) ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ (𝑅1‘𝑥)) |
43 | 41, 42 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) → ∃𝑥 ∈ 𝐵 𝐴 ∈ (𝑅1‘𝑥)) |
44 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → 𝑥 ∈ 𝐵) |
45 | | limsuc 7671 |
. . . . . . . . . . . . 13
⊢ (Lim
𝐵 → (𝑥 ∈ 𝐵 ↔ suc 𝑥 ∈ 𝐵)) |
46 | 45 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → (𝑥 ∈ 𝐵 ↔ suc 𝑥 ∈ 𝐵)) |
47 | 44, 46 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → suc 𝑥 ∈ 𝐵) |
48 | | limsuc 7671 |
. . . . . . . . . . . 12
⊢ (Lim
𝐵 → (suc 𝑥 ∈ 𝐵 ↔ suc suc 𝑥 ∈ 𝐵)) |
49 | 48 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → (suc 𝑥 ∈ 𝐵 ↔ suc suc 𝑥 ∈ 𝐵)) |
50 | 47, 49 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → suc suc 𝑥 ∈ 𝐵) |
51 | | r1tr 9465 |
. . . . . . . . . . . . . . 15
⊢ Tr
(𝑅1‘𝑥) |
52 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → 𝐴 ∈ (𝑅1‘𝑥)) |
53 | | trss 5196 |
. . . . . . . . . . . . . . 15
⊢ (Tr
(𝑅1‘𝑥) → (𝐴 ∈ (𝑅1‘𝑥) → 𝐴 ⊆ (𝑅1‘𝑥))) |
54 | 51, 52, 53 | mpsyl 68 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → 𝐴 ⊆ (𝑅1‘𝑥)) |
55 | 54, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → 𝒫 𝐴 ⊆ 𝒫
(𝑅1‘𝑥)) |
56 | 7 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → 𝐵 ∈ dom
𝑅1) |
57 | | ordtr1 6294 |
. . . . . . . . . . . . . . . 16
⊢ (Ord dom
𝑅1 → ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1) →
𝑥 ∈ dom
𝑅1)) |
58 | 4, 57 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐵 ∧ 𝐵 ∈ dom 𝑅1) →
𝑥 ∈ dom
𝑅1) |
59 | 44, 56, 58 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → 𝑥 ∈ dom
𝑅1) |
60 | 59, 27 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) →
(𝑅1‘suc 𝑥) = 𝒫
(𝑅1‘𝑥)) |
61 | 55, 60 | sseqtrrd 3958 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → 𝒫 𝐴 ⊆
(𝑅1‘suc 𝑥)) |
62 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢
(𝑅1‘suc 𝑥) ∈ V |
63 | 62 | elpw2 5264 |
. . . . . . . . . . . 12
⊢
(𝒫 𝐴 ∈
𝒫 (𝑅1‘suc 𝑥) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc
𝑥)) |
64 | 61, 63 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → 𝒫 𝐴 ∈ 𝒫
(𝑅1‘suc 𝑥)) |
65 | 59, 25 | sylib 217 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → suc 𝑥 ∈ dom
𝑅1) |
66 | | r1sucg 9458 |
. . . . . . . . . . . 12
⊢ (suc
𝑥 ∈ dom
𝑅1 → (𝑅1‘suc suc 𝑥) = 𝒫
(𝑅1‘suc 𝑥)) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) →
(𝑅1‘suc suc 𝑥) = 𝒫
(𝑅1‘suc 𝑥)) |
68 | 64, 67 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → 𝒫 𝐴 ∈
(𝑅1‘suc suc 𝑥)) |
69 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = suc suc 𝑥 → (𝑅1‘𝑦) =
(𝑅1‘suc suc 𝑥)) |
70 | 69 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑦 = suc suc 𝑥 → (𝒫 𝐴 ∈ (𝑅1‘𝑦) ↔ 𝒫 𝐴 ∈
(𝑅1‘suc suc 𝑥))) |
71 | 70 | rspcev 3552 |
. . . . . . . . . 10
⊢ ((suc suc
𝑥 ∈ 𝐵 ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc
𝑥)) → ∃𝑦 ∈ 𝐵 𝒫 𝐴 ∈ (𝑅1‘𝑦)) |
72 | 50, 68, 71 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 ∈ (𝑅1‘𝑥))) → ∃𝑦 ∈ 𝐵 𝒫 𝐴 ∈ (𝑅1‘𝑦)) |
73 | 43, 72 | rexlimddv 3219 |
. . . . . . . 8
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) → ∃𝑦 ∈ 𝐵 𝒫 𝐴 ∈ (𝑅1‘𝑦)) |
74 | | eliun 4925 |
. . . . . . . 8
⊢
(𝒫 𝐴 ∈
∪ 𝑦 ∈ 𝐵 (𝑅1‘𝑦) ↔ ∃𝑦 ∈ 𝐵 𝒫 𝐴 ∈ (𝑅1‘𝑦)) |
75 | 73, 74 | sylibr 233 |
. . . . . . 7
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ∈ ∪
𝑦 ∈ 𝐵 (𝑅1‘𝑦)) |
76 | | r1limg 9460 |
. . . . . . . 8
⊢ ((𝐵 ∈ dom
𝑅1 ∧ Lim 𝐵) → (𝑅1‘𝐵) = ∪ 𝑦 ∈ 𝐵 (𝑅1‘𝑦)) |
77 | 7, 76 | sylan 579 |
. . . . . . 7
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) → (𝑅1‘𝐵) = ∪ 𝑦 ∈ 𝐵 (𝑅1‘𝑦)) |
78 | 75, 77 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ∈ (𝑅1‘𝐵)) |
79 | | trss 5196 |
. . . . . 6
⊢ (Tr
(𝑅1‘𝐵) → (𝒫 𝐴 ∈ (𝑅1‘𝐵) → 𝒫 𝐴 ⊆
(𝑅1‘𝐵))) |
80 | 37, 78, 79 | mpsyl 68 |
. . . . 5
⊢ ((𝐴 ∈
(𝑅1‘𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵)) |
81 | 80 | ex 412 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘𝐵) → (Lim 𝐵 → 𝒫 𝐴 ⊆ (𝑅1‘𝐵))) |
82 | 81 | adantld 490 |
. . 3
⊢ (𝐴 ∈
(𝑅1‘𝐵) → ((𝐵 ∈ V ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵))) |
83 | 18, 36, 82 | 3jaod 1426 |
. 2
⊢ (𝐴 ∈
(𝑅1‘𝐵) → ((𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵))) |
84 | 10, 83 | mpd 15 |
1
⊢ (𝐴 ∈
(𝑅1‘𝐵) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵)) |