MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Structured version   Visualization version   GIF version

Theorem r1pwss 9806
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))

Proof of Theorem r1pwss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9788 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . . . 6 Lim dom 𝑅1
3 limord 6424 . . . . . 6 (Lim dom 𝑅1 → Ord dom 𝑅1)
42, 3ax-mp 5 . . . . 5 Ord dom 𝑅1
5 ordsson 7785 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
64, 5ax-mp 5 . . . 4 dom 𝑅1 ⊆ On
7 elfvdm 6923 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
86, 7sselid 3961 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
9 onzsl 7849 . . 3 (𝐵 ∈ On ↔ (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
108, 9sylib 218 . 2 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
11 noel 4318 . . . . 5 ¬ 𝐴 ∈ ∅
12 fveq2 6886 . . . . . . . 8 (𝐵 = ∅ → (𝑅1𝐵) = (𝑅1‘∅))
13 r10 9790 . . . . . . . 8 (𝑅1‘∅) = ∅
1412, 13eqtrdi 2785 . . . . . . 7 (𝐵 = ∅ → (𝑅1𝐵) = ∅)
1514eleq2d 2819 . . . . . 6 (𝐵 = ∅ → (𝐴 ∈ (𝑅1𝐵) ↔ 𝐴 ∈ ∅))
1615biimpcd 249 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝐴 ∈ ∅))
1711, 16mtoi 199 . . . 4 (𝐴 ∈ (𝑅1𝐵) → ¬ 𝐵 = ∅)
1817pm2.21d 121 . . 3 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
19 simpl 482 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ (𝑅1𝐵))
20 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 = suc 𝑥)
2120fveq2d 6890 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = (𝑅1‘suc 𝑥))
227adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 ∈ dom 𝑅1)
2320, 22eqeltrrd 2834 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
24 limsuc 7852 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
252, 24ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2623, 25sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
27 r1sucg 9791 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2921, 28eqtrd 2769 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = 𝒫 (𝑅1𝑥))
3019, 29eleqtrd 2835 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ 𝒫 (𝑅1𝑥))
31 elpwi 4587 . . . . . . 7 (𝐴 ∈ 𝒫 (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥))
32 sspw 4591 . . . . . . 7 (𝐴 ⊆ (𝑅1𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3330, 31, 323syl 18 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3433, 29sseqtrrd 4001 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
3534ex 412 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
3635rexlimdvw 3147 . . 3 (𝐴 ∈ (𝑅1𝐵) → (∃𝑥 ∈ On 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
37 r1tr 9798 . . . . . 6 Tr (𝑅1𝐵)
38 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 ∈ (𝑅1𝐵))
39 r1limg 9793 . . . . . . . . . . . 12 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
407, 39sylan 580 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
4138, 40eleqtrd 2835 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 𝑥𝐵 (𝑅1𝑥))
42 eliun 4975 . . . . . . . . . 10 (𝐴 𝑥𝐵 (𝑅1𝑥) ↔ ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
4341, 42sylib 218 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
44 simprl 770 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥𝐵)
45 limsuc 7852 . . . . . . . . . . . . 13 (Lim 𝐵 → (𝑥𝐵 ↔ suc 𝑥𝐵))
4645ad2antlr 727 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑥𝐵 ↔ suc 𝑥𝐵))
4744, 46mpbid 232 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥𝐵)
48 limsuc 7852 . . . . . . . . . . . 12 (Lim 𝐵 → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
4948ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
5047, 49mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc suc 𝑥𝐵)
51 r1tr 9798 . . . . . . . . . . . . . . 15 Tr (𝑅1𝑥)
52 simprr 772 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ∈ (𝑅1𝑥))
53 trss 5250 . . . . . . . . . . . . . . 15 (Tr (𝑅1𝑥) → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥)))
5451, 52, 53mpsyl 68 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ⊆ (𝑅1𝑥))
5554, 32syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
567ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐵 ∈ dom 𝑅1)
57 ordtr1 6407 . . . . . . . . . . . . . . . 16 (Ord dom 𝑅1 → ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
584, 57ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5944, 56, 58syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥 ∈ dom 𝑅1)
6059, 27syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6155, 60sseqtrrd 4001 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
62 fvex 6899 . . . . . . . . . . . . 13 (𝑅1‘suc 𝑥) ∈ V
6362elpw2 5314 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
6461, 63sylibr 234 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥))
6559, 25sylib 218 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥 ∈ dom 𝑅1)
66 r1sucg 9791 . . . . . . . . . . . 12 (suc 𝑥 ∈ dom 𝑅1 → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6765, 66syl 17 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6864, 67eleqtrrd 2836 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥))
69 fveq2 6886 . . . . . . . . . . . 12 (𝑦 = suc suc 𝑥 → (𝑅1𝑦) = (𝑅1‘suc suc 𝑥))
7069eleq2d 2819 . . . . . . . . . . 11 (𝑦 = suc suc 𝑥 → (𝒫 𝐴 ∈ (𝑅1𝑦) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)))
7170rspcev 3605 . . . . . . . . . 10 ((suc suc 𝑥𝐵 ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7250, 68, 71syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7343, 72rexlimddv 3148 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
74 eliun 4975 . . . . . . . 8 (𝒫 𝐴 𝑦𝐵 (𝑅1𝑦) ↔ ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7573, 74sylibr 234 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 𝑦𝐵 (𝑅1𝑦))
76 r1limg 9793 . . . . . . . 8 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
777, 76sylan 580 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
7875, 77eleqtrrd 2836 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ∈ (𝑅1𝐵))
79 trss 5250 . . . . . 6 (Tr (𝑅1𝐵) → (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8037, 78, 79mpsyl 68 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
8180ex 412 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (Lim 𝐵 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8281adantld 490 . . 3 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 ∈ V ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8318, 36, 823jaod 1430 . 2 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8410, 83mpd 15 1 (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463  wss 3931  c0 4313  𝒫 cpw 4580   ciun 4971  Tr wtr 5239  dom cdm 5665  Ord word 6362  Oncon0 6363  Lim wlim 6364  suc csuc 6365  Fun wfun 6535  cfv 6541  𝑅1cr1 9784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-r1 9786
This theorem is referenced by:  r1sscl  9807
  Copyright terms: Public domain W3C validator