Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measres Structured version   Visualization version   GIF version

Theorem measres 31483
Description: Building a measure restricted to a smaller sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measres ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀𝑇) ∈ (measures‘𝑇))

Proof of Theorem measres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1133 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → 𝑇 ran sigAlgebra)
2 measfrge0 31464 . . . . 5 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
323ad2ant1 1129 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → 𝑀:𝑆⟶(0[,]+∞))
4 simp3 1134 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → 𝑇𝑆)
53, 4fssresd 6547 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀𝑇):𝑇⟶(0[,]+∞))
6 0elsiga 31375 . . . . 5 (𝑇 ran sigAlgebra → ∅ ∈ 𝑇)
7 fvres 6691 . . . . 5 (∅ ∈ 𝑇 → ((𝑀𝑇)‘∅) = (𝑀‘∅))
81, 6, 73syl 18 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ((𝑀𝑇)‘∅) = (𝑀‘∅))
9 measvnul 31467 . . . . 5 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
1093ad2ant1 1129 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀‘∅) = 0)
118, 10eqtrd 2858 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ((𝑀𝑇)‘∅) = 0)
12 simp11 1199 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑀 ∈ (measures‘𝑆))
13 simp13 1201 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑇𝑆)
14 simp2 1133 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑇)
15 sspw 4554 . . . . . . . . 9 (𝑇𝑆 → 𝒫 𝑇 ⊆ 𝒫 𝑆)
1615sselda 3969 . . . . . . . 8 ((𝑇𝑆𝑥 ∈ 𝒫 𝑇) → 𝑥 ∈ 𝒫 𝑆)
1713, 14, 16syl2anc 586 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑆)
18 simp3 1134 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
19 measvun 31470 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ 𝒫 𝑆 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))
2012, 17, 18, 19syl3anc 1367 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))
2113ad2ant1 1129 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑇 ran sigAlgebra)
22 simp3l 1197 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ≼ ω)
23 sigaclcu 31378 . . . . . . . 8 ((𝑇 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑇𝑥 ≼ ω) → 𝑥𝑇)
2421, 14, 22, 23syl3anc 1367 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑇)
2524fvresd 6692 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ((𝑀𝑇)‘ 𝑥) = (𝑀 𝑥))
26 elpwi 4550 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑇𝑥𝑇)
2726sselda 3969 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝑇𝑦𝑥) → 𝑦𝑇)
2827adantll 712 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) ∧ 𝑦𝑥) → 𝑦𝑇)
2928fvresd 6692 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) ∧ 𝑦𝑥) → ((𝑀𝑇)‘𝑦) = (𝑀𝑦))
3029esumeq2dv 31299 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) → Σ*𝑦𝑥((𝑀𝑇)‘𝑦) = Σ*𝑦𝑥(𝑀𝑦))
31303adant3 1128 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → Σ*𝑦𝑥((𝑀𝑇)‘𝑦) = Σ*𝑦𝑥(𝑀𝑦))
3220, 25, 313eqtr4d 2868 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦))
33323expia 1117 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦)))
3433ralrimiva 3184 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦)))
355, 11, 343jca 1124 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ((𝑀𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦))))
36 ismeas 31460 . . 3 (𝑇 ran sigAlgebra → ((𝑀𝑇) ∈ (measures‘𝑇) ↔ ((𝑀𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦)))))
3736biimprd 250 . 2 (𝑇 ran sigAlgebra → (((𝑀𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦))) → (𝑀𝑇) ∈ (measures‘𝑇)))
381, 35, 37sylc 65 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀𝑇) ∈ (measures‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wss 3938  c0 4293  𝒫 cpw 4541   cuni 4840  Disj wdisj 5033   class class class wbr 5068  ran crn 5558  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  ωcom 7582  cdom 8509  0cc0 10539  +∞cpnf 10674  [,]cicc 12744  Σ*cesum 31288  sigAlgebracsiga 31369  measurescmeas 31456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-esum 31289  df-siga 31370  df-meas 31457
This theorem is referenced by:  measinb2  31484
  Copyright terms: Public domain W3C validator