Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measres Structured version   Visualization version   GIF version

Theorem measres 31591
Description: Building a measure restricted to a smaller sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measres ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀𝑇) ∈ (measures‘𝑇))

Proof of Theorem measres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → 𝑇 ran sigAlgebra)
2 measfrge0 31572 . . . . 5 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
323ad2ant1 1130 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → 𝑀:𝑆⟶(0[,]+∞))
4 simp3 1135 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → 𝑇𝑆)
53, 4fssresd 6519 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀𝑇):𝑇⟶(0[,]+∞))
6 0elsiga 31483 . . . . 5 (𝑇 ran sigAlgebra → ∅ ∈ 𝑇)
7 fvres 6664 . . . . 5 (∅ ∈ 𝑇 → ((𝑀𝑇)‘∅) = (𝑀‘∅))
81, 6, 73syl 18 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ((𝑀𝑇)‘∅) = (𝑀‘∅))
9 measvnul 31575 . . . . 5 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
1093ad2ant1 1130 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀‘∅) = 0)
118, 10eqtrd 2833 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ((𝑀𝑇)‘∅) = 0)
12 simp11 1200 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑀 ∈ (measures‘𝑆))
13 simp13 1202 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑇𝑆)
14 simp2 1134 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑇)
15 sspw 4510 . . . . . . . . 9 (𝑇𝑆 → 𝒫 𝑇 ⊆ 𝒫 𝑆)
1615sselda 3915 . . . . . . . 8 ((𝑇𝑆𝑥 ∈ 𝒫 𝑇) → 𝑥 ∈ 𝒫 𝑆)
1713, 14, 16syl2anc 587 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑆)
18 simp3 1135 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
19 measvun 31578 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ 𝒫 𝑆 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))
2012, 17, 18, 19syl3anc 1368 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))
2113ad2ant1 1130 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑇 ran sigAlgebra)
22 simp3l 1198 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ≼ ω)
23 sigaclcu 31486 . . . . . . . 8 ((𝑇 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑇𝑥 ≼ ω) → 𝑥𝑇)
2421, 14, 22, 23syl3anc 1368 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑇)
2524fvresd 6665 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ((𝑀𝑇)‘ 𝑥) = (𝑀 𝑥))
26 elpwi 4506 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑇𝑥𝑇)
2726sselda 3915 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝑇𝑦𝑥) → 𝑦𝑇)
2827adantll 713 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) ∧ 𝑦𝑥) → 𝑦𝑇)
2928fvresd 6665 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) ∧ 𝑦𝑥) → ((𝑀𝑇)‘𝑦) = (𝑀𝑦))
3029esumeq2dv 31407 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) → Σ*𝑦𝑥((𝑀𝑇)‘𝑦) = Σ*𝑦𝑥(𝑀𝑦))
31303adant3 1129 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → Σ*𝑦𝑥((𝑀𝑇)‘𝑦) = Σ*𝑦𝑥(𝑀𝑦))
3220, 25, 313eqtr4d 2843 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦))
33323expia 1118 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦)))
3433ralrimiva 3149 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦)))
355, 11, 343jca 1125 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ((𝑀𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦))))
36 ismeas 31568 . . 3 (𝑇 ran sigAlgebra → ((𝑀𝑇) ∈ (measures‘𝑇) ↔ ((𝑀𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦)))))
3736biimprd 251 . 2 (𝑇 ran sigAlgebra → (((𝑀𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦))) → (𝑀𝑇) ∈ (measures‘𝑇)))
381, 35, 37sylc 65 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀𝑇) ∈ (measures‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881  c0 4243  𝒫 cpw 4497   cuni 4800  Disj wdisj 4995   class class class wbr 5030  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  ωcom 7560  cdom 8490  0cc0 10526  +∞cpnf 10661  [,]cicc 12729  Σ*cesum 31396  sigAlgebracsiga 31477  measurescmeas 31564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-esum 31397  df-siga 31478  df-meas 31565
This theorem is referenced by:  measinb2  31592
  Copyright terms: Public domain W3C validator