Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measres Structured version   Visualization version   GIF version

Theorem measres 34235
Description: Building a measure restricted to a smaller sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measres ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀𝑇) ∈ (measures‘𝑇))

Proof of Theorem measres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → 𝑇 ran sigAlgebra)
2 measfrge0 34216 . . . . 5 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
323ad2ant1 1133 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → 𝑀:𝑆⟶(0[,]+∞))
4 simp3 1138 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → 𝑇𝑆)
53, 4fssresd 6690 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀𝑇):𝑇⟶(0[,]+∞))
6 0elsiga 34127 . . . . 5 (𝑇 ran sigAlgebra → ∅ ∈ 𝑇)
7 fvres 6841 . . . . 5 (∅ ∈ 𝑇 → ((𝑀𝑇)‘∅) = (𝑀‘∅))
81, 6, 73syl 18 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ((𝑀𝑇)‘∅) = (𝑀‘∅))
9 measvnul 34219 . . . . 5 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
1093ad2ant1 1133 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀‘∅) = 0)
118, 10eqtrd 2766 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ((𝑀𝑇)‘∅) = 0)
12 simp11 1204 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑀 ∈ (measures‘𝑆))
13 simp13 1206 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑇𝑆)
14 simp2 1137 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑇)
15 sspw 4558 . . . . . . . . 9 (𝑇𝑆 → 𝒫 𝑇 ⊆ 𝒫 𝑆)
1615sselda 3929 . . . . . . . 8 ((𝑇𝑆𝑥 ∈ 𝒫 𝑇) → 𝑥 ∈ 𝒫 𝑆)
1713, 14, 16syl2anc 584 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑆)
18 simp3 1138 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
19 measvun 34222 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ 𝒫 𝑆 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))
2012, 17, 18, 19syl3anc 1373 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = Σ*𝑦𝑥(𝑀𝑦))
2113ad2ant1 1133 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑇 ran sigAlgebra)
22 simp3l 1202 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ≼ ω)
23 sigaclcu 34130 . . . . . . . 8 ((𝑇 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑇𝑥 ≼ ω) → 𝑥𝑇)
2421, 14, 22, 23syl3anc 1373 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑇)
2524fvresd 6842 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ((𝑀𝑇)‘ 𝑥) = (𝑀 𝑥))
26 elpwi 4554 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑇𝑥𝑇)
2726sselda 3929 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝑇𝑦𝑥) → 𝑦𝑇)
2827adantll 714 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) ∧ 𝑦𝑥) → 𝑦𝑇)
2928fvresd 6842 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) ∧ 𝑦𝑥) → ((𝑀𝑇)‘𝑦) = (𝑀𝑦))
3029esumeq2dv 34051 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) → Σ*𝑦𝑥((𝑀𝑇)‘𝑦) = Σ*𝑦𝑥(𝑀𝑦))
31303adant3 1132 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → Σ*𝑦𝑥((𝑀𝑇)‘𝑦) = Σ*𝑦𝑥(𝑀𝑦))
3220, 25, 313eqtr4d 2776 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦))
33323expia 1121 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦)))
3433ralrimiva 3124 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦)))
355, 11, 343jca 1128 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → ((𝑀𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦))))
36 ismeas 34212 . . 3 (𝑇 ran sigAlgebra → ((𝑀𝑇) ∈ (measures‘𝑇) ↔ ((𝑀𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦)))))
3736biimprd 248 . 2 (𝑇 ran sigAlgebra → (((𝑀𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((𝑀𝑇)‘ 𝑥) = Σ*𝑦𝑥((𝑀𝑇)‘𝑦))) → (𝑀𝑇) ∈ (measures‘𝑇)))
381, 35, 37sylc 65 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ran sigAlgebra ∧ 𝑇𝑆) → (𝑀𝑇) ∈ (measures‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wss 3897  c0 4280  𝒫 cpw 4547   cuni 4856  Disj wdisj 5056   class class class wbr 5089  ran crn 5615  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  ωcom 7796  cdom 8867  0cc0 11006  +∞cpnf 11143  [,]cicc 13248  Σ*cesum 34040  sigAlgebracsiga 34121  measurescmeas 34208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-esum 34041  df-siga 34122  df-meas 34209
This theorem is referenced by:  measinb2  34236
  Copyright terms: Public domain W3C validator