| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1137 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → 𝑇 ∈ ∪ ran
sigAlgebra) |
| 2 | | measfrge0 34145 |
. . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) |
| 3 | 2 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → 𝑀:𝑆⟶(0[,]+∞)) |
| 4 | | simp3 1138 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → 𝑇 ⊆ 𝑆) |
| 5 | 3, 4 | fssresd 6756 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → (𝑀 ↾ 𝑇):𝑇⟶(0[,]+∞)) |
| 6 | | 0elsiga 34056 |
. . . . 5
⊢ (𝑇 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑇) |
| 7 | | fvres 6906 |
. . . . 5
⊢ (∅
∈ 𝑇 → ((𝑀 ↾ 𝑇)‘∅) = (𝑀‘∅)) |
| 8 | 1, 6, 7 | 3syl 18 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → ((𝑀 ↾ 𝑇)‘∅) = (𝑀‘∅)) |
| 9 | | measvnul 34148 |
. . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) |
| 10 | 9 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → (𝑀‘∅) =
0) |
| 11 | 8, 10 | eqtrd 2769 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → ((𝑀 ↾ 𝑇)‘∅) = 0) |
| 12 | | simp11 1203 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑀 ∈ (measures‘𝑆)) |
| 13 | | simp13 1205 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑇 ⊆ 𝑆) |
| 14 | | simp2 1137 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑇) |
| 15 | | sspw 4593 |
. . . . . . . . 9
⊢ (𝑇 ⊆ 𝑆 → 𝒫 𝑇 ⊆ 𝒫 𝑆) |
| 16 | 15 | sselda 3965 |
. . . . . . . 8
⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑥 ∈ 𝒫 𝑇) → 𝑥 ∈ 𝒫 𝑆) |
| 17 | 13, 14, 16 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑆) |
| 18 | | simp3 1138 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) |
| 19 | | measvun 34151 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ 𝒫 𝑆 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| 20 | 12, 17, 18, 19 | syl3anc 1372 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑀‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| 21 | 1 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑇 ∈ ∪ ran
sigAlgebra) |
| 22 | | simp3l 1201 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ≼ ω) |
| 23 | | sigaclcu 34059 |
. . . . . . . 8
⊢ ((𝑇 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑇 ∧ 𝑥 ≼ ω) → ∪ 𝑥
∈ 𝑇) |
| 24 | 21, 14, 22, 23 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ 𝑇) |
| 25 | 24 | fvresd 6907 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ((𝑀 ↾ 𝑇)‘∪ 𝑥) = (𝑀‘∪ 𝑥)) |
| 26 | | elpwi 4589 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 𝑇 → 𝑥 ⊆ 𝑇) |
| 27 | 26 | sselda 3965 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝑇 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑇) |
| 28 | 27 | adantll 714 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑇) |
| 29 | 28 | fvresd 6907 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) ∧ 𝑦 ∈ 𝑥) → ((𝑀 ↾ 𝑇)‘𝑦) = (𝑀‘𝑦)) |
| 30 | 29 | esumeq2dv 33980 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) → Σ*𝑦 ∈ 𝑥((𝑀 ↾ 𝑇)‘𝑦) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| 31 | 30 | 3adant3 1132 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → Σ*𝑦 ∈ 𝑥((𝑀 ↾ 𝑇)‘𝑦) = Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| 32 | 20, 25, 31 | 3eqtr4d 2779 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇 ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ((𝑀 ↾ 𝑇)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((𝑀 ↾ 𝑇)‘𝑦)) |
| 33 | 32 | 3expia 1121 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) ∧ 𝑥 ∈ 𝒫 𝑇) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ((𝑀 ↾ 𝑇)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((𝑀 ↾ 𝑇)‘𝑦))) |
| 34 | 33 | ralrimiva 3133 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ((𝑀 ↾ 𝑇)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((𝑀 ↾ 𝑇)‘𝑦))) |
| 35 | 5, 11, 34 | 3jca 1128 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → ((𝑀 ↾ 𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀 ↾ 𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ((𝑀 ↾ 𝑇)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((𝑀 ↾ 𝑇)‘𝑦)))) |
| 36 | | ismeas 34141 |
. . 3
⊢ (𝑇 ∈ ∪ ran sigAlgebra → ((𝑀 ↾ 𝑇) ∈ (measures‘𝑇) ↔ ((𝑀 ↾ 𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀 ↾ 𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ((𝑀 ↾ 𝑇)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((𝑀 ↾ 𝑇)‘𝑦))))) |
| 37 | 36 | biimprd 248 |
. 2
⊢ (𝑇 ∈ ∪ ran sigAlgebra → (((𝑀 ↾ 𝑇):𝑇⟶(0[,]+∞) ∧ ((𝑀 ↾ 𝑇)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑇((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ((𝑀 ↾ 𝑇)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((𝑀 ↾ 𝑇)‘𝑦))) → (𝑀 ↾ 𝑇) ∈ (measures‘𝑇))) |
| 38 | 1, 35, 37 | sylc 65 |
1
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑇 ∈ ∪ ran
sigAlgebra ∧ 𝑇 ⊆
𝑆) → (𝑀 ↾ 𝑇) ∈ (measures‘𝑇)) |