![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisnALT | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 44923 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30). mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 44923. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 44923, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unisnALT.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisnALT | ⊢ ∪ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4914 | . . . . . 6 ⊢ (𝑥 ∈ ∪ {𝐴} ↔ ∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) | |
2 | 1 | biimpi 216 | . . . . 5 ⊢ (𝑥 ∈ ∪ {𝐴} → ∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) |
3 | id 22 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → (𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) | |
4 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝑞) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝑞) |
6 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴}) | |
7 | 3, 6 | syl 17 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴}) |
8 | elsni 4647 | . . . . . . . . 9 ⊢ (𝑞 ∈ {𝐴} → 𝑞 = 𝐴) | |
9 | 7, 8 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 = 𝐴) |
10 | eleq2 2827 | . . . . . . . . 9 ⊢ (𝑞 = 𝐴 → (𝑥 ∈ 𝑞 ↔ 𝑥 ∈ 𝐴)) | |
11 | 10 | biimpac 478 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 = 𝐴) → 𝑥 ∈ 𝐴) |
12 | 5, 9, 11 | syl2anc 584 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
13 | 12 | ax-gen 1791 | . . . . . 6 ⊢ ∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
14 | 19.23v 1939 | . . . . . . 7 ⊢ (∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) ↔ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) | |
15 | 14 | biimpi 216 | . . . . . 6 ⊢ (∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) → (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) |
16 | 13, 15 | ax-mp 5 | . . . . 5 ⊢ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
17 | pm3.35 803 | . . . . 5 ⊢ ((∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) ∧ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
18 | 2, 16, 17 | sylancl 586 | . . . 4 ⊢ (𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) |
19 | 18 | ax-gen 1791 | . . 3 ⊢ ∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) |
20 | df-ss 3979 | . . . 4 ⊢ (∪ {𝐴} ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴)) | |
21 | 20 | biimpri 228 | . . 3 ⊢ (∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) → ∪ {𝐴} ⊆ 𝐴) |
22 | 19, 21 | ax-mp 5 | . 2 ⊢ ∪ {𝐴} ⊆ 𝐴 |
23 | id 22 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
24 | unisnALT.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
25 | 24 | snid 4666 | . . . . 5 ⊢ 𝐴 ∈ {𝐴} |
26 | elunii 4916 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ ∪ {𝐴}) | |
27 | 23, 25, 26 | sylancl 586 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) |
28 | 27 | ax-gen 1791 | . . 3 ⊢ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) |
29 | df-ss 3979 | . . . 4 ⊢ (𝐴 ⊆ ∪ {𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴})) | |
30 | 29 | biimpri 228 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) → 𝐴 ⊆ ∪ {𝐴}) |
31 | 28, 30 | ax-mp 5 | . 2 ⊢ 𝐴 ⊆ ∪ {𝐴} |
32 | 22, 31 | eqssi 4011 | 1 ⊢ ∪ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1534 = wceq 1536 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 {csn 4630 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-sn 4631 df-uni 4912 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |