| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisnALT | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 45082 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30). mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 45082. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 45082, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| unisnALT.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisnALT | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4863 | . . . . . 6 ⊢ (𝑥 ∈ ∪ {𝐴} ↔ ∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) | |
| 2 | 1 | biimpi 216 | . . . . 5 ⊢ (𝑥 ∈ ∪ {𝐴} → ∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) |
| 3 | id 22 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → (𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) | |
| 4 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝑞) | |
| 5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝑞) |
| 6 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴}) | |
| 7 | 3, 6 | syl 17 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴}) |
| 8 | elsni 4594 | . . . . . . . . 9 ⊢ (𝑞 ∈ {𝐴} → 𝑞 = 𝐴) | |
| 9 | 7, 8 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 = 𝐴) |
| 10 | eleq2 2822 | . . . . . . . . 9 ⊢ (𝑞 = 𝐴 → (𝑥 ∈ 𝑞 ↔ 𝑥 ∈ 𝐴)) | |
| 11 | 10 | biimpac 478 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 = 𝐴) → 𝑥 ∈ 𝐴) |
| 12 | 5, 9, 11 | syl2anc 584 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
| 13 | 12 | ax-gen 1796 | . . . . . 6 ⊢ ∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
| 14 | 19.23v 1943 | . . . . . . 7 ⊢ (∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) ↔ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) | |
| 15 | 14 | biimpi 216 | . . . . . 6 ⊢ (∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) → (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) |
| 16 | 13, 15 | ax-mp 5 | . . . . 5 ⊢ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
| 17 | pm3.35 802 | . . . . 5 ⊢ ((∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) ∧ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
| 18 | 2, 16, 17 | sylancl 586 | . . . 4 ⊢ (𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) |
| 19 | 18 | ax-gen 1796 | . . 3 ⊢ ∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) |
| 20 | df-ss 3915 | . . . 4 ⊢ (∪ {𝐴} ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴)) | |
| 21 | 20 | biimpri 228 | . . 3 ⊢ (∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) → ∪ {𝐴} ⊆ 𝐴) |
| 22 | 19, 21 | ax-mp 5 | . 2 ⊢ ∪ {𝐴} ⊆ 𝐴 |
| 23 | id 22 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
| 24 | unisnALT.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 25 | 24 | snid 4616 | . . . . 5 ⊢ 𝐴 ∈ {𝐴} |
| 26 | elunii 4865 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ ∪ {𝐴}) | |
| 27 | 23, 25, 26 | sylancl 586 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) |
| 28 | 27 | ax-gen 1796 | . . 3 ⊢ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) |
| 29 | df-ss 3915 | . . . 4 ⊢ (𝐴 ⊆ ∪ {𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴})) | |
| 30 | 29 | biimpri 228 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) → 𝐴 ⊆ ∪ {𝐴}) |
| 31 | 28, 30 | ax-mp 5 | . 2 ⊢ 𝐴 ⊆ ∪ {𝐴} |
| 32 | 22, 31 | eqssi 3947 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {csn 4577 ∪ cuni 4860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-sn 4578 df-uni 4861 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |