Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisnALT Structured version   Visualization version   GIF version

Theorem unisnALT 41125
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 41125 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30). mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 41125. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 41125, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
unisnALT.1 𝐴 ∈ V
Assertion
Ref Expression
unisnALT {𝐴} = 𝐴

Proof of Theorem unisnALT
Dummy variables 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4840 . . . . . 6 (𝑥 {𝐴} ↔ ∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}))
21biimpi 217 . . . . 5 (𝑥 {𝐴} → ∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}))
3 id 22 . . . . . . . . 9 ((𝑥𝑞𝑞 ∈ {𝐴}) → (𝑥𝑞𝑞 ∈ {𝐴}))
4 simpl 483 . . . . . . . . 9 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝑞)
53, 4syl 17 . . . . . . . 8 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝑞)
6 simpr 485 . . . . . . . . . 10 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴})
73, 6syl 17 . . . . . . . . 9 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴})
8 elsni 4581 . . . . . . . . 9 (𝑞 ∈ {𝐴} → 𝑞 = 𝐴)
97, 8syl 17 . . . . . . . 8 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑞 = 𝐴)
10 eleq2 2906 . . . . . . . . 9 (𝑞 = 𝐴 → (𝑥𝑞𝑥𝐴))
1110biimpac 479 . . . . . . . 8 ((𝑥𝑞𝑞 = 𝐴) → 𝑥𝐴)
125, 9, 11syl2anc 584 . . . . . . 7 ((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴)
1312ax-gen 1789 . . . . . 6 𝑞((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴)
14 19.23v 1936 . . . . . . 7 (∀𝑞((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴) ↔ (∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴))
1514biimpi 217 . . . . . 6 (∀𝑞((𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴) → (∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴))
1613, 15ax-mp 5 . . . . 5 (∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴)
17 pm3.35 799 . . . . 5 ((∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) ∧ (∃𝑞(𝑥𝑞𝑞 ∈ {𝐴}) → 𝑥𝐴)) → 𝑥𝐴)
182, 16, 17sylancl 586 . . . 4 (𝑥 {𝐴} → 𝑥𝐴)
1918ax-gen 1789 . . 3 𝑥(𝑥 {𝐴} → 𝑥𝐴)
20 dfss2 3959 . . . 4 ( {𝐴} ⊆ 𝐴 ↔ ∀𝑥(𝑥 {𝐴} → 𝑥𝐴))
2120biimpri 229 . . 3 (∀𝑥(𝑥 {𝐴} → 𝑥𝐴) → {𝐴} ⊆ 𝐴)
2219, 21ax-mp 5 . 2 {𝐴} ⊆ 𝐴
23 id 22 . . . . 5 (𝑥𝐴𝑥𝐴)
24 unisnALT.1 . . . . . 6 𝐴 ∈ V
2524snid 4598 . . . . 5 𝐴 ∈ {𝐴}
26 elunii 4842 . . . . 5 ((𝑥𝐴𝐴 ∈ {𝐴}) → 𝑥 {𝐴})
2723, 25, 26sylancl 586 . . . 4 (𝑥𝐴𝑥 {𝐴})
2827ax-gen 1789 . . 3 𝑥(𝑥𝐴𝑥 {𝐴})
29 dfss2 3959 . . . 4 (𝐴 {𝐴} ↔ ∀𝑥(𝑥𝐴𝑥 {𝐴}))
3029biimpri 229 . . 3 (∀𝑥(𝑥𝐴𝑥 {𝐴}) → 𝐴 {𝐴})
3128, 30ax-mp 5 . 2 𝐴 {𝐴}
3222, 31eqssi 3987 1 {𝐴} = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1528   = wceq 1530  wex 1773  wcel 2107  Vcvv 3500  wss 3940  {csn 4564   cuni 4837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-v 3502  df-in 3947  df-ss 3956  df-sn 4565  df-uni 4838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator