![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisnALT | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 43620 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30). mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 43620. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 43620, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unisnALT.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisnALT | ⊢ ∪ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4910 | . . . . . 6 ⊢ (𝑥 ∈ ∪ {𝐴} ↔ ∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) | |
2 | 1 | biimpi 215 | . . . . 5 ⊢ (𝑥 ∈ ∪ {𝐴} → ∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) |
3 | id 22 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → (𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) | |
4 | simpl 484 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝑞) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝑞) |
6 | simpr 486 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴}) | |
7 | 3, 6 | syl 17 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴}) |
8 | elsni 4644 | . . . . . . . . 9 ⊢ (𝑞 ∈ {𝐴} → 𝑞 = 𝐴) | |
9 | 7, 8 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 = 𝐴) |
10 | eleq2 2823 | . . . . . . . . 9 ⊢ (𝑞 = 𝐴 → (𝑥 ∈ 𝑞 ↔ 𝑥 ∈ 𝐴)) | |
11 | 10 | biimpac 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 = 𝐴) → 𝑥 ∈ 𝐴) |
12 | 5, 9, 11 | syl2anc 585 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
13 | 12 | ax-gen 1798 | . . . . . 6 ⊢ ∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
14 | 19.23v 1946 | . . . . . . 7 ⊢ (∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) ↔ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) | |
15 | 14 | biimpi 215 | . . . . . 6 ⊢ (∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) → (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) |
16 | 13, 15 | ax-mp 5 | . . . . 5 ⊢ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
17 | pm3.35 802 | . . . . 5 ⊢ ((∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) ∧ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
18 | 2, 16, 17 | sylancl 587 | . . . 4 ⊢ (𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) |
19 | 18 | ax-gen 1798 | . . 3 ⊢ ∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) |
20 | dfss2 3967 | . . . 4 ⊢ (∪ {𝐴} ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴)) | |
21 | 20 | biimpri 227 | . . 3 ⊢ (∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) → ∪ {𝐴} ⊆ 𝐴) |
22 | 19, 21 | ax-mp 5 | . 2 ⊢ ∪ {𝐴} ⊆ 𝐴 |
23 | id 22 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
24 | unisnALT.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
25 | 24 | snid 4663 | . . . . 5 ⊢ 𝐴 ∈ {𝐴} |
26 | elunii 4912 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ ∪ {𝐴}) | |
27 | 23, 25, 26 | sylancl 587 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) |
28 | 27 | ax-gen 1798 | . . 3 ⊢ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) |
29 | dfss2 3967 | . . . 4 ⊢ (𝐴 ⊆ ∪ {𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴})) | |
30 | 29 | biimpri 227 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) → 𝐴 ⊆ ∪ {𝐴}) |
31 | 28, 30 | ax-mp 5 | . 2 ⊢ 𝐴 ⊆ ∪ {𝐴} |
32 | 22, 31 | eqssi 3997 | 1 ⊢ ∪ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3947 {csn 4627 ∪ cuni 4907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3954 df-ss 3964 df-sn 4628 df-uni 4908 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |