Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem48 Structured version   Visualization version   GIF version

Theorem etransclem48 46287
Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
etransclem48.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem48.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem48.a 𝐴 = (coeff‘𝑄)
etransclem48.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem48.m 𝑀 = (deg‘𝑄)
etransclem48.c 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
etransclem48.s 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
etransclem48.i 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
etransclem48.t 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
Assertion
Ref Expression
etransclem48 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐴,𝑛,𝑗   𝐶,𝑖,𝑛   𝑖,𝐼,𝑛   𝑗,𝑀,𝑘   𝑛,𝑀   𝑄,𝑗   𝑆,𝑖   𝑇,𝑗,𝑘   𝜑,𝑖,𝑛   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖)   𝐶(𝑗,𝑘)   𝑄(𝑖,𝑘,𝑛)   𝑆(𝑗,𝑘,𝑛)   𝑇(𝑖,𝑛)   𝐼(𝑗,𝑘)   𝑀(𝑖)

Proof of Theorem etransclem48
Dummy variables 𝑥 𝑦 𝑧 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem48.q . . . . . . . . . 10 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
21eldifad 3929 . . . . . . . . 9 (𝜑𝑄 ∈ (Poly‘ℤ))
3 0zd 12548 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
4 etransclem48.a . . . . . . . . . 10 𝐴 = (coeff‘𝑄)
54coef2 26143 . . . . . . . . 9 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
62, 3, 5syl2anc 584 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℤ)
7 0nn0 12464 . . . . . . . . 9 0 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
96, 8ffvelcdmd 7060 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℤ)
10 zabscl 15286 . . . . . . 7 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℤ)
119, 10syl 17 . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) ∈ ℤ)
12 etransclem48.m . . . . . . . . 9 𝑀 = (deg‘𝑄)
13 dgrcl 26145 . . . . . . . . . 10 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
142, 13syl 17 . . . . . . . . 9 (𝜑 → (deg‘𝑄) ∈ ℕ0)
1512, 14eqeltrid 2833 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1615faccld 14256 . . . . . . 7 (𝜑 → (!‘𝑀) ∈ ℕ)
1716nnzd 12563 . . . . . 6 (𝜑 → (!‘𝑀) ∈ ℤ)
18 ssrab2 4046 . . . . . . . 8 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℕ0
19 nn0ssz 12559 . . . . . . . 8 0 ⊆ ℤ
2018, 19sstri 3959 . . . . . . 7 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℤ
21 etransclem48.i . . . . . . . 8 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
22 nn0uz 12842 . . . . . . . . . 10 0 = (ℤ‘0)
2318, 22sseqtri 3998 . . . . . . . . 9 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0)
24 1rp 12962 . . . . . . . . . . 11 1 ∈ ℝ+
25 nfv 1914 . . . . . . . . . . . . . 14 𝑛𝜑
26 nfmpt1 5209 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0𝐶)
27 nfmpt1 5209 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
28 etransclem48.s . . . . . . . . . . . . . . 15 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
29 nfmpt1 5209 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
3028, 29nfcxfr 2890 . . . . . . . . . . . . . 14 𝑛𝑆
31 nn0ex 12455 . . . . . . . . . . . . . . . . 17 0 ∈ V
3231mptex 7200 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0𝐶) ∈ V
3332a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ0𝐶) ∈ V)
34 etransclem48.c . . . . . . . . . . . . . . . 16 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
35 fzfid 13945 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...𝑀) ∈ Fin)
366adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
37 elfznn0 13588 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
3837adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
3936, 38ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
4039zcnd 12646 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
41 ere 16062 . . . . . . . . . . . . . . . . . . . . . . . 24 e ∈ ℝ
4241recni 11195 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℂ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
44 elfzelz 13492 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
4544zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
4743, 46cxpcld 26624 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
4840, 47mulcld 11201 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
4948abscld 15412 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
5049recnd 11209 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
5115nn0cnd 12512 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℂ)
52 peano2nn0 12489 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
5315, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 + 1) ∈ ℕ0)
5451, 53expcld 14118 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
5551, 54mulcld 11201 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5655adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5750, 56mulcld 11201 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5835, 57fsumcl 15706 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5934, 58eqeltrid 2833 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
60 eqidd 2731 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶))
61 eqidd 2731 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 = 𝑖) → 𝐶 = 𝐶)
62 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
6359adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
6460, 61, 62, 63fvmptd 6978 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑖) = 𝐶)
6522, 3, 33, 59, 64climconst 15516 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0𝐶) ⇝ 𝐶)
6631mptex 7200 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))) ∈ V
6728, 66eqeltri 2825 . . . . . . . . . . . . . . 15 𝑆 ∈ V
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
69 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
7069expfac 45662 . . . . . . . . . . . . . . 15 ((𝑀↑(𝑀 + 1)) ∈ ℂ → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
7154, 70syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
72 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
7359adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
74 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶)
7574fvmpt2 6982 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7672, 73, 75syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7776, 73eqeltrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) ∈ ℂ)
78 ovex 7423 . . . . . . . . . . . . . . . . 17 (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V
7969fvmpt2 6982 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8078, 79mpan2 691 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8180adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8254adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
8382, 72expcld 14118 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝑀↑(𝑀 + 1))↑𝑛) ∈ ℂ)
8472faccld 14256 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℕ)
8584nncnd 12209 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℂ)
8684nnne0d 12243 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ≠ 0)
8783, 85, 86divcld 11965 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ ℂ)
8881, 87eqeltrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) ∈ ℂ)
89 ovex 7423 . . . . . . . . . . . . . . . . 17 (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V
9028fvmpt2 6982 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9189, 90mpan2 691 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9291adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9376, 81oveq12d 7408 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9492, 93eqtr4d 2768 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)))
9525, 26, 27, 30, 22, 3, 65, 68, 71, 77, 88, 94climmulf 45609 . . . . . . . . . . . . 13 (𝜑𝑆 ⇝ (𝐶 · 0))
9659mul01d 11380 . . . . . . . . . . . . 13 (𝜑 → (𝐶 · 0) = 0)
9795, 96breqtrd 5136 . . . . . . . . . . . 12 (𝜑𝑆 ⇝ 0)
98 eqidd 2731 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝑆𝑛))
9977, 88mulcld 11201 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) ∈ ℂ)
10094, 99eqeltrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) ∈ ℂ)
10130, 22, 3, 68, 98, 100clim0cf 45659 . . . . . . . . . . . 12 (𝜑 → (𝑆 ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒))
10297, 101mpbid 232 . . . . . . . . . . 11 (𝜑 → ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒)
103 breq2 5114 . . . . . . . . . . . . 13 (𝑒 = 1 → ((abs‘(𝑆𝑛)) < 𝑒 ↔ (abs‘(𝑆𝑛)) < 1))
104103rexralbidv 3204 . . . . . . . . . . . 12 (𝑒 = 1 → (∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒 ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1))
105104rspcva 3589 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒) → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
10624, 102, 105sylancr 587 . . . . . . . . . 10 (𝜑 → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
107 rabn0 4355 . . . . . . . . . 10 ({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅ ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
108106, 107sylibr 234 . . . . . . . . 9 (𝜑 → {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅)
109 infssuzcl 12898 . . . . . . . . 9 (({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0) ∧ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅) → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11023, 108, 109sylancr 587 . . . . . . . 8 (𝜑 → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11121, 110eqeltrid 2833 . . . . . . 7 (𝜑𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11220, 111sselid 3947 . . . . . 6 (𝜑𝐼 ∈ ℤ)
113 tpssi 4805 . . . . . 6 (((abs‘(𝐴‘0)) ∈ ℤ ∧ (!‘𝑀) ∈ ℤ ∧ 𝐼 ∈ ℤ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
11411, 17, 112, 113syl3anc 1373 . . . . 5 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
115 etransclem48.t . . . . . 6 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
116 xrltso 13108 . . . . . . . 8 < Or ℝ*
117116a1i 11 . . . . . . 7 (𝜑 → < Or ℝ*)
118 tpfi 9283 . . . . . . . 8 {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin
119118a1i 11 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin)
12011tpnzd 4747 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅)
121 zssre 12543 . . . . . . . . 9 ℤ ⊆ ℝ
122 ressxr 11225 . . . . . . . . 9 ℝ ⊆ ℝ*
123121, 122sstri 3959 . . . . . . . 8 ℤ ⊆ ℝ*
124114, 123sstrdi 3962 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
125 fisupcl 9428 . . . . . . 7 (( < Or ℝ* ∧ ({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅ ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)) → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
126117, 119, 120, 124, 125syl13anc 1374 . . . . . 6 (𝜑 → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
127115, 126eqeltrid 2833 . . . . 5 (𝜑𝑇 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
128114, 127sseldd 3950 . . . 4 (𝜑𝑇 ∈ ℤ)
129 0red 11184 . . . . 5 (𝜑 → 0 ∈ ℝ)
13016nnred 12208 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℝ)
131128zred 12645 . . . . 5 (𝜑𝑇 ∈ ℝ)
13216nngt0d 12242 . . . . 5 (𝜑 → 0 < (!‘𝑀))
133 fvex 6874 . . . . . . . 8 (!‘𝑀) ∈ V
134133tpid2 4737 . . . . . . 7 (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
135 supxrub 13291 . . . . . . 7 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
136124, 134, 135sylancl 586 . . . . . 6 (𝜑 → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
137136, 115breqtrrdi 5152 . . . . 5 (𝜑 → (!‘𝑀) ≤ 𝑇)
138129, 130, 131, 132, 137ltletrd 11341 . . . 4 (𝜑 → 0 < 𝑇)
139 elnnz 12546 . . . 4 (𝑇 ∈ ℕ ↔ (𝑇 ∈ ℤ ∧ 0 < 𝑇))
140128, 138, 139sylanbrc 583 . . 3 (𝜑𝑇 ∈ ℕ)
141 prmunb 16892 . . 3 (𝑇 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
142140, 141syl 17 . 2 (𝜑 → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
14313ad2ant1 1133 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
144 etransclem48.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
1451443ad2ant1 1133 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑄‘e) = 0)
146 etransclem48.a0 . . . . 5 (𝜑 → (𝐴‘0) ≠ 0)
1471463ad2ant1 1133 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ≠ 0)
148 simp2 1137 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℙ)
1499zcnd 12646 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℂ)
1501493ad2ant1 1133 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ∈ ℂ)
151150abscld 15412 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ∈ ℝ)
1521313ad2ant1 1133 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 ∈ ℝ)
153 prmz 16652 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
154153zred 12645 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
1551543ad2ant2 1134 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℝ)
156124adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
157 fvex 6874 . . . . . . . . 9 (abs‘(𝐴‘0)) ∈ V
158157tpid1 4735 . . . . . . . 8 (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
159 supxrub 13291 . . . . . . . 8 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
160156, 158, 159sylancl 586 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
161160, 115breqtrrdi 5152 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ 𝑇)
1621613adant3 1132 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ≤ 𝑇)
163 simp3 1138 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 < 𝑝)
164151, 152, 155, 162, 163lelttrd 11339 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) < 𝑝)
1651303ad2ant1 1133 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ∈ ℝ)
1661373ad2ant1 1133 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ≤ 𝑇)
167165, 152, 155, 166, 163lelttrd 11339 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) < 𝑝)
16834a1i 11 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))))
169 oveq2 7398 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → ((𝑀↑(𝑀 + 1))↑𝑛) = ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)))
170 fveq2 6861 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (!‘𝑛) = (!‘(𝑝 − 1)))
171169, 170oveq12d 7408 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) = (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))))
172168, 171oveq12d 7408 . . . . . . . 8 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
173 prmnn 16651 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
174 nnm1nn0 12490 . . . . . . . . . 10 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
175173, 174syl 17 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℕ0)
176175adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
17758adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
17854adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
179178, 176expcld 14118 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℂ)
180175faccld 14256 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℕ)
181180nncnd 12209 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℂ)
182181adantl 481 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℂ)
183180nnne0d 12243 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ≠ 0)
184183adantl 481 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ≠ 0)
185179, 182, 184divcld 11965 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℂ)
186177, 185mulcld 11201 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℂ)
18728, 172, 176, 186fvmptd3 6994 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
188187eqcomd 2736 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1891883adant3 1132 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1901123ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℤ)
191 1zzd 12571 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 1 ∈ ℤ)
192153, 191zsubcld 12650 . . . . . . . . . 10 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℤ)
1931923ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ ℤ)
194190zred 12645 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℝ)
195 tpid3g 4739 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℤ → 𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
196112, 195syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
197 supxrub 13291 . . . . . . . . . . . . . 14 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → 𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
198124, 196, 197syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
199198, 115breqtrrdi 5152 . . . . . . . . . . . 12 (𝜑𝐼𝑇)
2001993ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼𝑇)
201194, 152, 155, 200, 163lelttrd 11339 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 < 𝑝)
2021533ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℤ)
203 zltlem1 12593 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
204190, 202, 203syl2anc 584 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
205201, 204mpbid 232 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ≤ (𝑝 − 1))
206 eluz2 12806 . . . . . . . . 9 ((𝑝 − 1) ∈ (ℤ𝐼) ↔ (𝐼 ∈ ℤ ∧ (𝑝 − 1) ∈ ℤ ∧ 𝐼 ≤ (𝑝 − 1)))
207190, 193, 205, 206syl3anbrc 1344 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ (ℤ𝐼))
2081113ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
209 fveq2 6861 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (ℤ𝑖) = (ℤ𝐼))
210209raleqdv 3301 . . . . . . . . . . 11 (𝑖 = 𝐼 → (∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1 ↔ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
211210elrab 3662 . . . . . . . . . 10 (𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ↔ (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
212208, 211sylib 218 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
213212simprd 495 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1)
214 nfcv 2892 . . . . . . . . . . 11 𝑛abs
215 nfcv 2892 . . . . . . . . . . . 12 𝑛(𝑝 − 1)
21630, 215nffv 6871 . . . . . . . . . . 11 𝑛(𝑆‘(𝑝 − 1))
217214, 216nffv 6871 . . . . . . . . . 10 𝑛(abs‘(𝑆‘(𝑝 − 1)))
218 nfcv 2892 . . . . . . . . . 10 𝑛 <
219 nfcv 2892 . . . . . . . . . 10 𝑛1
220217, 218, 219nfbr 5157 . . . . . . . . 9 𝑛(abs‘(𝑆‘(𝑝 − 1))) < 1
221 2fveq3 6866 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (abs‘(𝑆𝑛)) = (abs‘(𝑆‘(𝑝 − 1))))
222221breq1d 5120 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → ((abs‘(𝑆𝑛)) < 1 ↔ (abs‘(𝑆‘(𝑝 − 1))) < 1))
223220, 222rspc 3579 . . . . . . . 8 ((𝑝 − 1) ∈ (ℤ𝐼) → (∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1 → (abs‘(𝑆‘(𝑝 − 1))) < 1))
224207, 213, 223sylc 65 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝑆‘(𝑝 − 1))) < 1)
225171oveq2d 7406 . . . . . . . . . . 11 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
226 ovexd 7425 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ V)
22728, 225, 176, 226fvmptd3 6994 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
22815nn0red 12511 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
229228, 53reexpcld 14135 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
230228, 229remulcld 11211 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
231230adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
23249, 231remulcld 11211 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23335, 232fsumrecl 15707 . . . . . . . . . . . . 13 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23434, 233eqeltrid 2833 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
235234adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝐶 ∈ ℝ)
236229adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℝ)
237236, 176reexpcld 14135 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℝ)
238180nnred 12208 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℝ)
239238adantl 481 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℝ)
240237, 239, 184redivcld 12017 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℝ)
241235, 240remulcld 11211 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℝ)
242227, 241eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
2432423adant3 1132 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
244 1red 11182 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 1 ∈ ℝ)
245243, 244absltd 15405 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ((abs‘(𝑆‘(𝑝 − 1))) < 1 ↔ (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1)))
246224, 245mpbid 232 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1))
247246simprd 495 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) < 1)
248189, 247eqbrtrd 5132 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) < 1)
249 etransclem6 46245 . . . 4 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑝 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑝)))
250 eqid 2730 . . . 4 Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥)
251 eqid 2730 . . . 4 𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1)))
252143, 145, 4, 147, 12, 148, 164, 167, 248, 249, 250, 251etransclem47 46286 . . 3 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
253252rexlimdv3a 3139 . 2 (𝜑 → (∃𝑝 ∈ ℙ 𝑇 < 𝑝 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)))
254142, 253mpd 15 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  c0 4299  {csn 4592  {ctp 4596   class class class wbr 5110  cmpt 5191   Or wor 5548  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  supcsup 9398  infcinf 9399  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  +crp 12958  (,)cioo 13313  ...cfz 13475  cexp 14033  !cfa 14245  abscabs 15207  cli 15457  Σcsu 15659  cprod 15876  eceu 16035  cprime 16648  citg 25526  0𝑝c0p 25577  Polycply 26096  coeffccoe 26098  degcdgr 26099  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775  df-dvn 25776  df-ply 26100  df-coe 26102  df-dgr 26103  df-log 26472  df-cxp 26473
This theorem is referenced by:  etransc  46288
  Copyright terms: Public domain W3C validator