Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem48 Structured version   Visualization version   GIF version

Theorem etransclem48 42033
Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
etransclem48.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem48.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem48.a 𝐴 = (coeff‘𝑄)
etransclem48.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem48.m 𝑀 = (deg‘𝑄)
etransclem48.c 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
etransclem48.s 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
etransclem48.i 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
etransclem48.t 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
Assertion
Ref Expression
etransclem48 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐴,𝑛,𝑗   𝐶,𝑖,𝑛   𝑖,𝐼,𝑛   𝑗,𝑀,𝑘   𝑛,𝑀   𝑄,𝑗   𝑆,𝑖   𝑇,𝑗,𝑘   𝜑,𝑖,𝑛   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖)   𝐶(𝑗,𝑘)   𝑄(𝑖,𝑘,𝑛)   𝑆(𝑗,𝑘,𝑛)   𝑇(𝑖,𝑛)   𝐼(𝑗,𝑘)   𝑀(𝑖)

Proof of Theorem etransclem48
Dummy variables 𝑥 𝑦 𝑧 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem48.q . . . . . . . . . 10 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
21eldifad 3843 . . . . . . . . 9 (𝜑𝑄 ∈ (Poly‘ℤ))
3 0zd 11811 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
4 etransclem48.a . . . . . . . . . 10 𝐴 = (coeff‘𝑄)
54coef2 24539 . . . . . . . . 9 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
62, 3, 5syl2anc 576 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℤ)
7 0nn0 11730 . . . . . . . . 9 0 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
96, 8ffvelrnd 6683 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℤ)
10 zabscl 14540 . . . . . . 7 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℤ)
119, 10syl 17 . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) ∈ ℤ)
12 etransclem48.m . . . . . . . . 9 𝑀 = (deg‘𝑄)
13 dgrcl 24541 . . . . . . . . . 10 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
142, 13syl 17 . . . . . . . . 9 (𝜑 → (deg‘𝑄) ∈ ℕ0)
1512, 14syl5eqel 2872 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1615faccld 13465 . . . . . . 7 (𝜑 → (!‘𝑀) ∈ ℕ)
1716nnzd 11905 . . . . . 6 (𝜑 → (!‘𝑀) ∈ ℤ)
18 ssrab2 3948 . . . . . . . 8 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℕ0
19 nn0ssz 11822 . . . . . . . 8 0 ⊆ ℤ
2018, 19sstri 3869 . . . . . . 7 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℤ
21 etransclem48.i . . . . . . . 8 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
22 nn0uz 12100 . . . . . . . . . 10 0 = (ℤ‘0)
2318, 22sseqtri 3895 . . . . . . . . 9 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0)
24 1rp 12214 . . . . . . . . . . 11 1 ∈ ℝ+
25 nfv 1874 . . . . . . . . . . . . . 14 𝑛𝜑
26 nfmpt1 5030 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0𝐶)
27 nfmpt1 5030 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
28 etransclem48.s . . . . . . . . . . . . . . 15 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
29 nfmpt1 5030 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
3028, 29nfcxfr 2932 . . . . . . . . . . . . . 14 𝑛𝑆
31 nn0ex 11720 . . . . . . . . . . . . . . . . 17 0 ∈ V
3231mptex 6818 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0𝐶) ∈ V
3332a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ0𝐶) ∈ V)
34 etransclem48.c . . . . . . . . . . . . . . . 16 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
35 fzfid 13162 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...𝑀) ∈ Fin)
366adantr 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
37 elfznn0 12822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
3837adantl 474 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
3936, 38ffvelrnd 6683 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
4039zcnd 11907 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
41 ere 15308 . . . . . . . . . . . . . . . . . . . . . . . 24 e ∈ ℝ
4241recni 10460 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℂ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
44 elfzelz 12730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
4544zcnd 11907 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
4645adantl 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
4743, 46cxpcld 25007 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
4840, 47mulcld 10466 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
4948abscld 14663 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
5049recnd 10474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
5115nn0cnd 11775 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℂ)
52 peano2nn0 11755 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
5315, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 + 1) ∈ ℕ0)
5451, 53expcld 13331 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
5551, 54mulcld 10466 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5655adantr 473 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5750, 56mulcld 10466 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5835, 57fsumcl 14956 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5934, 58syl5eqel 2872 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
60 eqidd 2781 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶))
61 eqidd 2781 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 = 𝑖) → 𝐶 = 𝐶)
62 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
6359adantr 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
6460, 61, 62, 63fvmptd 6607 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑖) = 𝐶)
6522, 3, 33, 59, 64climconst 14767 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0𝐶) ⇝ 𝐶)
6631mptex 6818 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))) ∈ V
6728, 66eqeltri 2864 . . . . . . . . . . . . . . 15 𝑆 ∈ V
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
69 eqid 2780 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
7069expfac 41404 . . . . . . . . . . . . . . 15 ((𝑀↑(𝑀 + 1)) ∈ ℂ → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
7154, 70syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
72 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
7359adantr 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
74 eqid 2780 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶)
7574fvmpt2 6611 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7672, 73, 75syl2anc 576 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7776, 73eqeltrd 2868 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) ∈ ℂ)
78 ovex 7014 . . . . . . . . . . . . . . . . 17 (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V
7969fvmpt2 6611 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8078, 79mpan2 679 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8180adantl 474 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8254adantr 473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
8382, 72expcld 13331 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝑀↑(𝑀 + 1))↑𝑛) ∈ ℂ)
8472faccld 13465 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℕ)
8584nncnd 11463 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℂ)
8684nnne0d 11496 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ≠ 0)
8783, 85, 86divcld 11223 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ ℂ)
8881, 87eqeltrd 2868 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) ∈ ℂ)
89 ovex 7014 . . . . . . . . . . . . . . . . 17 (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V
9028fvmpt2 6611 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9189, 90mpan2 679 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9291adantl 474 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9376, 81oveq12d 7000 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9492, 93eqtr4d 2819 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)))
9525, 26, 27, 30, 22, 3, 65, 68, 71, 77, 88, 94climmulf 41351 . . . . . . . . . . . . 13 (𝜑𝑆 ⇝ (𝐶 · 0))
9659mul01d 10645 . . . . . . . . . . . . 13 (𝜑 → (𝐶 · 0) = 0)
9795, 96breqtrd 4960 . . . . . . . . . . . 12 (𝜑𝑆 ⇝ 0)
98 eqidd 2781 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝑆𝑛))
9977, 88mulcld 10466 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) ∈ ℂ)
10094, 99eqeltrd 2868 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) ∈ ℂ)
10130, 22, 3, 68, 98, 100clim0cf 41401 . . . . . . . . . . . 12 (𝜑 → (𝑆 ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒))
10297, 101mpbid 224 . . . . . . . . . . 11 (𝜑 → ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒)
103 breq2 4938 . . . . . . . . . . . . 13 (𝑒 = 1 → ((abs‘(𝑆𝑛)) < 𝑒 ↔ (abs‘(𝑆𝑛)) < 1))
104103rexralbidv 3248 . . . . . . . . . . . 12 (𝑒 = 1 → (∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒 ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1))
105104rspcva 3535 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒) → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
10624, 102, 105sylancr 579 . . . . . . . . . 10 (𝜑 → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
107 rabn0 4228 . . . . . . . . . 10 ({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅ ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
108106, 107sylibr 226 . . . . . . . . 9 (𝜑 → {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅)
109 infssuzcl 12152 . . . . . . . . 9 (({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0) ∧ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅) → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11023, 108, 109sylancr 579 . . . . . . . 8 (𝜑 → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11121, 110syl5eqel 2872 . . . . . . 7 (𝜑𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11220, 111sseldi 3858 . . . . . 6 (𝜑𝐼 ∈ ℤ)
113 tpssi 4648 . . . . . 6 (((abs‘(𝐴‘0)) ∈ ℤ ∧ (!‘𝑀) ∈ ℤ ∧ 𝐼 ∈ ℤ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
11411, 17, 112, 113syl3anc 1352 . . . . 5 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
115 etransclem48.t . . . . . 6 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
116 xrltso 12357 . . . . . . . 8 < Or ℝ*
117116a1i 11 . . . . . . 7 (𝜑 → < Or ℝ*)
118 tpfi 8595 . . . . . . . 8 {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin
119118a1i 11 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin)
12011tpnzd 4594 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅)
121 zssre 11806 . . . . . . . . 9 ℤ ⊆ ℝ
122 ressxr 10490 . . . . . . . . 9 ℝ ⊆ ℝ*
123121, 122sstri 3869 . . . . . . . 8 ℤ ⊆ ℝ*
124114, 123syl6ss 3872 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
125 fisupcl 8734 . . . . . . 7 (( < Or ℝ* ∧ ({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅ ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)) → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
126117, 119, 120, 124, 125syl13anc 1353 . . . . . 6 (𝜑 → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
127115, 126syl5eqel 2872 . . . . 5 (𝜑𝑇 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
128114, 127sseldd 3861 . . . 4 (𝜑𝑇 ∈ ℤ)
129 0red 10449 . . . . 5 (𝜑 → 0 ∈ ℝ)
13016nnred 11462 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℝ)
131128zred 11906 . . . . 5 (𝜑𝑇 ∈ ℝ)
13216nngt0d 11495 . . . . 5 (𝜑 → 0 < (!‘𝑀))
133 fvex 6517 . . . . . . . 8 (!‘𝑀) ∈ V
134133tpid2 4585 . . . . . . 7 (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
135 supxrub 12539 . . . . . . 7 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
136124, 134, 135sylancl 578 . . . . . 6 (𝜑 → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
137136, 115syl6breqr 4976 . . . . 5 (𝜑 → (!‘𝑀) ≤ 𝑇)
138129, 130, 131, 132, 137ltletrd 10606 . . . 4 (𝜑 → 0 < 𝑇)
139 elnnz 11809 . . . 4 (𝑇 ∈ ℕ ↔ (𝑇 ∈ ℤ ∧ 0 < 𝑇))
140128, 138, 139sylanbrc 575 . . 3 (𝜑𝑇 ∈ ℕ)
141 prmunb 16112 . . 3 (𝑇 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
142140, 141syl 17 . 2 (𝜑 → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
14313ad2ant1 1114 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
144 etransclem48.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
1451443ad2ant1 1114 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑄‘e) = 0)
146 etransclem48.a0 . . . . 5 (𝜑 → (𝐴‘0) ≠ 0)
1471463ad2ant1 1114 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ≠ 0)
148 simp2 1118 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℙ)
1499zcnd 11907 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℂ)
1501493ad2ant1 1114 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ∈ ℂ)
151150abscld 14663 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ∈ ℝ)
1521313ad2ant1 1114 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 ∈ ℝ)
153 prmz 15881 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
154153zred 11906 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
1551543ad2ant2 1115 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℝ)
156124adantr 473 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
157 fvex 6517 . . . . . . . . 9 (abs‘(𝐴‘0)) ∈ V
158157tpid1 4583 . . . . . . . 8 (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
159 supxrub 12539 . . . . . . . 8 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
160156, 158, 159sylancl 578 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
161160, 115syl6breqr 4976 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ 𝑇)
1621613adant3 1113 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ≤ 𝑇)
163 simp3 1119 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 < 𝑝)
164151, 152, 155, 162, 163lelttrd 10604 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) < 𝑝)
1651303ad2ant1 1114 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ∈ ℝ)
1661373ad2ant1 1114 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ≤ 𝑇)
167165, 152, 155, 166, 163lelttrd 10604 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) < 𝑝)
16834a1i 11 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))))
169 oveq2 6990 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → ((𝑀↑(𝑀 + 1))↑𝑛) = ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)))
170 fveq2 6504 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (!‘𝑛) = (!‘(𝑝 − 1)))
171169, 170oveq12d 7000 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) = (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))))
172168, 171oveq12d 7000 . . . . . . . 8 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
173 prmnn 15880 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
174 nnm1nn0 11756 . . . . . . . . . 10 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
175173, 174syl 17 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℕ0)
176175adantl 474 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
17758adantr 473 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
17854adantr 473 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
179178, 176expcld 13331 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℂ)
180175faccld 13465 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℕ)
181180nncnd 11463 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℂ)
182181adantl 474 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℂ)
183180nnne0d 11496 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ≠ 0)
184183adantl 474 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ≠ 0)
185179, 182, 184divcld 11223 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℂ)
186177, 185mulcld 10466 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℂ)
18728, 172, 176, 186fvmptd3 6623 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
188187eqcomd 2786 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1891883adant3 1113 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1901123ad2ant1 1114 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℤ)
191 1zzd 11832 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 1 ∈ ℤ)
192153, 191zsubcld 11911 . . . . . . . . . 10 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℤ)
1931923ad2ant2 1115 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ ℤ)
194190zred 11906 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℝ)
195 tpid3g 4587 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℤ → 𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
196112, 195syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
197 supxrub 12539 . . . . . . . . . . . . . 14 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → 𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
198124, 196, 197syl2anc 576 . . . . . . . . . . . . 13 (𝜑𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
199198, 115syl6breqr 4976 . . . . . . . . . . . 12 (𝜑𝐼𝑇)
2001993ad2ant1 1114 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼𝑇)
201194, 152, 155, 200, 163lelttrd 10604 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 < 𝑝)
2021533ad2ant2 1115 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℤ)
203 zltlem1 11854 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
204190, 202, 203syl2anc 576 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
205201, 204mpbid 224 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ≤ (𝑝 − 1))
206 eluz2 12070 . . . . . . . . 9 ((𝑝 − 1) ∈ (ℤ𝐼) ↔ (𝐼 ∈ ℤ ∧ (𝑝 − 1) ∈ ℤ ∧ 𝐼 ≤ (𝑝 − 1)))
207190, 193, 205, 206syl3anbrc 1324 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ (ℤ𝐼))
2081113ad2ant1 1114 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
209 fveq2 6504 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (ℤ𝑖) = (ℤ𝐼))
210209raleqdv 3357 . . . . . . . . . . 11 (𝑖 = 𝐼 → (∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1 ↔ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
211210elrab 3597 . . . . . . . . . 10 (𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ↔ (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
212208, 211sylib 210 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
213212simprd 488 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1)
214 nfcv 2934 . . . . . . . . . . 11 𝑛abs
215 nfcv 2934 . . . . . . . . . . . 12 𝑛(𝑝 − 1)
21630, 215nffv 6514 . . . . . . . . . . 11 𝑛(𝑆‘(𝑝 − 1))
217214, 216nffv 6514 . . . . . . . . . 10 𝑛(abs‘(𝑆‘(𝑝 − 1)))
218 nfcv 2934 . . . . . . . . . 10 𝑛 <
219 nfcv 2934 . . . . . . . . . 10 𝑛1
220217, 218, 219nfbr 4981 . . . . . . . . 9 𝑛(abs‘(𝑆‘(𝑝 − 1))) < 1
221 2fveq3 6509 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (abs‘(𝑆𝑛)) = (abs‘(𝑆‘(𝑝 − 1))))
222221breq1d 4944 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → ((abs‘(𝑆𝑛)) < 1 ↔ (abs‘(𝑆‘(𝑝 − 1))) < 1))
223220, 222rspc 3531 . . . . . . . 8 ((𝑝 − 1) ∈ (ℤ𝐼) → (∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1 → (abs‘(𝑆‘(𝑝 − 1))) < 1))
224207, 213, 223sylc 65 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝑆‘(𝑝 − 1))) < 1)
225171oveq2d 6998 . . . . . . . . . . 11 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
226 ovexd 7016 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ V)
22728, 225, 176, 226fvmptd3 6623 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
22815nn0red 11774 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
229228, 53reexpcld 13348 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
230228, 229remulcld 10476 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
231230adantr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
23249, 231remulcld 10476 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23335, 232fsumrecl 14957 . . . . . . . . . . . . 13 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23434, 233syl5eqel 2872 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
235234adantr 473 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝐶 ∈ ℝ)
236229adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℝ)
237236, 176reexpcld 13348 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℝ)
238180nnred 11462 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℝ)
239238adantl 474 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℝ)
240237, 239, 184redivcld 11275 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℝ)
241235, 240remulcld 10476 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℝ)
242227, 241eqeltrd 2868 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
2432423adant3 1113 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
244 1red 10446 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 1 ∈ ℝ)
245243, 244absltd 14656 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ((abs‘(𝑆‘(𝑝 − 1))) < 1 ↔ (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1)))
246224, 245mpbid 224 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1))
247246simprd 488 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) < 1)
248189, 247eqbrtrd 4956 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) < 1)
249 etransclem6 41991 . . . 4 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑝 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑝)))
250 eqid 2780 . . . 4 Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥)
251 eqid 2780 . . . 4 𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1)))
252143, 145, 4, 147, 12, 148, 164, 167, 248, 249, 250, 251etransclem47 42032 . . 3 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
253252rexlimdv3a 3233 . 2 (𝜑 → (∃𝑝 ∈ ℙ 𝑇 < 𝑝 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)))
254142, 253mpd 15 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2969  wral 3090  wrex 3091  {crab 3094  Vcvv 3417  cdif 3828  wss 3831  c0 4181  {csn 4444  {ctp 4448   class class class wbr 4934  cmpt 5013   Or wor 5329  wf 6189  cfv 6193  (class class class)co 6982  Fincfn 8312  supcsup 8705  infcinf 8706  cc 10339  cr 10340  0cc0 10341  1c1 10342   + caddc 10344   · cmul 10346  *cxr 10479   < clt 10480  cle 10481  cmin 10676  -cneg 10677   / cdiv 11104  cn 11445  0cn0 11713  cz 11799  cuz 12064  +crp 12210  (,)cioo 12560  ...cfz 12714  cexp 13250  !cfa 13454  abscabs 14460  cli 14708  Σcsu 14909  cprod 15125  eceu 15282  cprime 15877  citg 23937  0𝑝c0p 23988  Polycply 24492  coeffccoe 24494  degcdgr 24495  𝑐ccxp 24855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cc 9661  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-addf 10420  ax-mulf 10421
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-symdif 4109  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-disj 4903  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-ofr 7234  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-omul 7916  df-er 8095  df-map 8214  df-pm 8215  df-ixp 8266  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-fi 8676  df-sup 8707  df-inf 8708  df-oi 8775  df-dju 9130  df-card 9168  df-acn 9171  df-cda 9394  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-ioo 12564  df-ioc 12565  df-ico 12566  df-icc 12567  df-fz 12715  df-fzo 12856  df-fl 12983  df-mod 13059  df-seq 13191  df-exp 13251  df-fac 13455  df-bc 13484  df-hash 13512  df-shft 14293  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-limsup 14695  df-clim 14712  df-rlim 14713  df-sum 14910  df-prod 15126  df-ef 15287  df-e 15288  df-sin 15289  df-cos 15290  df-tan 15291  df-pi 15292  df-dvds 15474  df-gcd 15710  df-prm 15878  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-ress 16353  df-plusg 16440  df-mulr 16441  df-starv 16442  df-sca 16443  df-vsca 16444  df-ip 16445  df-tset 16446  df-ple 16447  df-ds 16449  df-unif 16450  df-hom 16451  df-cco 16452  df-rest 16558  df-topn 16559  df-0g 16577  df-gsum 16578  df-topgen 16579  df-pt 16580  df-prds 16583  df-xrs 16637  df-qtop 16642  df-imas 16643  df-xps 16645  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-mulg 18024  df-cntz 18230  df-cmn 18680  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-fbas 20259  df-fg 20260  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-cld 21346  df-ntr 21347  df-cls 21348  df-nei 21425  df-lp 21463  df-perf 21464  df-cn 21554  df-cnp 21555  df-haus 21642  df-cmp 21714  df-tx 21889  df-hmeo 22082  df-fil 22173  df-fm 22265  df-flim 22266  df-flf 22267  df-xms 22648  df-ms 22649  df-tms 22650  df-cncf 23204  df-ovol 23783  df-vol 23784  df-mbf 23938  df-itg1 23939  df-itg2 23940  df-ibl 23941  df-itg 23942  df-0p 23989  df-limc 24182  df-dv 24183  df-dvn 24184  df-ply 24496  df-coe 24498  df-dgr 24499  df-log 24856  df-cxp 24857
This theorem is referenced by:  etransc  42034
  Copyright terms: Public domain W3C validator