Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem48 Structured version   Visualization version   GIF version

Theorem etransclem48 43291
Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
etransclem48.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem48.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem48.a 𝐴 = (coeff‘𝑄)
etransclem48.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem48.m 𝑀 = (deg‘𝑄)
etransclem48.c 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
etransclem48.s 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
etransclem48.i 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
etransclem48.t 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
Assertion
Ref Expression
etransclem48 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐴,𝑛,𝑗   𝐶,𝑖,𝑛   𝑖,𝐼,𝑛   𝑗,𝑀,𝑘   𝑛,𝑀   𝑄,𝑗   𝑆,𝑖   𝑇,𝑗,𝑘   𝜑,𝑖,𝑛   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖)   𝐶(𝑗,𝑘)   𝑄(𝑖,𝑘,𝑛)   𝑆(𝑗,𝑘,𝑛)   𝑇(𝑖,𝑛)   𝐼(𝑗,𝑘)   𝑀(𝑖)

Proof of Theorem etransclem48
Dummy variables 𝑥 𝑦 𝑧 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem48.q . . . . . . . . . 10 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
21eldifad 3871 . . . . . . . . 9 (𝜑𝑄 ∈ (Poly‘ℤ))
3 0zd 12033 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
4 etransclem48.a . . . . . . . . . 10 𝐴 = (coeff‘𝑄)
54coef2 24928 . . . . . . . . 9 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
62, 3, 5syl2anc 588 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℤ)
7 0nn0 11950 . . . . . . . . 9 0 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
96, 8ffvelrnd 6844 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℤ)
10 zabscl 14722 . . . . . . 7 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℤ)
119, 10syl 17 . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) ∈ ℤ)
12 etransclem48.m . . . . . . . . 9 𝑀 = (deg‘𝑄)
13 dgrcl 24930 . . . . . . . . . 10 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
142, 13syl 17 . . . . . . . . 9 (𝜑 → (deg‘𝑄) ∈ ℕ0)
1512, 14eqeltrid 2857 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1615faccld 13695 . . . . . . 7 (𝜑 → (!‘𝑀) ∈ ℕ)
1716nnzd 12126 . . . . . 6 (𝜑 → (!‘𝑀) ∈ ℤ)
18 ssrab2 3985 . . . . . . . 8 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℕ0
19 nn0ssz 12043 . . . . . . . 8 0 ⊆ ℤ
2018, 19sstri 3902 . . . . . . 7 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℤ
21 etransclem48.i . . . . . . . 8 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
22 nn0uz 12321 . . . . . . . . . 10 0 = (ℤ‘0)
2318, 22sseqtri 3929 . . . . . . . . 9 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0)
24 1rp 12435 . . . . . . . . . . 11 1 ∈ ℝ+
25 nfv 1916 . . . . . . . . . . . . . 14 𝑛𝜑
26 nfmpt1 5131 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0𝐶)
27 nfmpt1 5131 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
28 etransclem48.s . . . . . . . . . . . . . . 15 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
29 nfmpt1 5131 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
3028, 29nfcxfr 2918 . . . . . . . . . . . . . 14 𝑛𝑆
31 nn0ex 11941 . . . . . . . . . . . . . . . . 17 0 ∈ V
3231mptex 6978 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0𝐶) ∈ V
3332a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ0𝐶) ∈ V)
34 etransclem48.c . . . . . . . . . . . . . . . 16 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
35 fzfid 13391 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...𝑀) ∈ Fin)
366adantr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
37 elfznn0 13050 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
3837adantl 486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
3936, 38ffvelrnd 6844 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
4039zcnd 12128 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
41 ere 15491 . . . . . . . . . . . . . . . . . . . . . . . 24 e ∈ ℝ
4241recni 10694 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℂ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
44 elfzelz 12957 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
4544zcnd 12128 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
4645adantl 486 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
4743, 46cxpcld 25399 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
4840, 47mulcld 10700 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
4948abscld 14845 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
5049recnd 10708 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
5115nn0cnd 11997 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℂ)
52 peano2nn0 11975 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
5315, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 + 1) ∈ ℕ0)
5451, 53expcld 13561 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
5551, 54mulcld 10700 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5655adantr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5750, 56mulcld 10700 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5835, 57fsumcl 15139 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5934, 58eqeltrid 2857 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
60 eqidd 2760 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶))
61 eqidd 2760 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 = 𝑖) → 𝐶 = 𝐶)
62 simpr 489 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
6359adantr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
6460, 61, 62, 63fvmptd 6767 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑖) = 𝐶)
6522, 3, 33, 59, 64climconst 14949 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0𝐶) ⇝ 𝐶)
6631mptex 6978 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))) ∈ V
6728, 66eqeltri 2849 . . . . . . . . . . . . . . 15 𝑆 ∈ V
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
69 eqid 2759 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
7069expfac 42666 . . . . . . . . . . . . . . 15 ((𝑀↑(𝑀 + 1)) ∈ ℂ → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
7154, 70syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
72 simpr 489 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
7359adantr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
74 eqid 2759 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶)
7574fvmpt2 6771 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7672, 73, 75syl2anc 588 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7776, 73eqeltrd 2853 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) ∈ ℂ)
78 ovex 7184 . . . . . . . . . . . . . . . . 17 (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V
7969fvmpt2 6771 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8078, 79mpan2 691 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8180adantl 486 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8254adantr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
8382, 72expcld 13561 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝑀↑(𝑀 + 1))↑𝑛) ∈ ℂ)
8472faccld 13695 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℕ)
8584nncnd 11691 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℂ)
8684nnne0d 11725 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ≠ 0)
8783, 85, 86divcld 11455 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ ℂ)
8881, 87eqeltrd 2853 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) ∈ ℂ)
89 ovex 7184 . . . . . . . . . . . . . . . . 17 (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V
9028fvmpt2 6771 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9189, 90mpan2 691 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9291adantl 486 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9376, 81oveq12d 7169 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9492, 93eqtr4d 2797 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)))
9525, 26, 27, 30, 22, 3, 65, 68, 71, 77, 88, 94climmulf 42613 . . . . . . . . . . . . 13 (𝜑𝑆 ⇝ (𝐶 · 0))
9659mul01d 10878 . . . . . . . . . . . . 13 (𝜑 → (𝐶 · 0) = 0)
9795, 96breqtrd 5059 . . . . . . . . . . . 12 (𝜑𝑆 ⇝ 0)
98 eqidd 2760 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝑆𝑛))
9977, 88mulcld 10700 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) ∈ ℂ)
10094, 99eqeltrd 2853 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) ∈ ℂ)
10130, 22, 3, 68, 98, 100clim0cf 42663 . . . . . . . . . . . 12 (𝜑 → (𝑆 ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒))
10297, 101mpbid 235 . . . . . . . . . . 11 (𝜑 → ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒)
103 breq2 5037 . . . . . . . . . . . . 13 (𝑒 = 1 → ((abs‘(𝑆𝑛)) < 𝑒 ↔ (abs‘(𝑆𝑛)) < 1))
104103rexralbidv 3226 . . . . . . . . . . . 12 (𝑒 = 1 → (∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒 ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1))
105104rspcva 3540 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒) → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
10624, 102, 105sylancr 591 . . . . . . . . . 10 (𝜑 → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
107 rabn0 4282 . . . . . . . . . 10 ({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅ ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
108106, 107sylibr 237 . . . . . . . . 9 (𝜑 → {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅)
109 infssuzcl 12373 . . . . . . . . 9 (({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0) ∧ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅) → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11023, 108, 109sylancr 591 . . . . . . . 8 (𝜑 → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11121, 110eqeltrid 2857 . . . . . . 7 (𝜑𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11220, 111sseldi 3891 . . . . . 6 (𝜑𝐼 ∈ ℤ)
113 tpssi 4727 . . . . . 6 (((abs‘(𝐴‘0)) ∈ ℤ ∧ (!‘𝑀) ∈ ℤ ∧ 𝐼 ∈ ℤ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
11411, 17, 112, 113syl3anc 1369 . . . . 5 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
115 etransclem48.t . . . . . 6 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
116 xrltso 12576 . . . . . . . 8 < Or ℝ*
117116a1i 11 . . . . . . 7 (𝜑 → < Or ℝ*)
118 tpfi 8828 . . . . . . . 8 {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin
119118a1i 11 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin)
12011tpnzd 4674 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅)
121 zssre 12028 . . . . . . . . 9 ℤ ⊆ ℝ
122 ressxr 10724 . . . . . . . . 9 ℝ ⊆ ℝ*
123121, 122sstri 3902 . . . . . . . 8 ℤ ⊆ ℝ*
124114, 123sstrdi 3905 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
125 fisupcl 8967 . . . . . . 7 (( < Or ℝ* ∧ ({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅ ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)) → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
126117, 119, 120, 124, 125syl13anc 1370 . . . . . 6 (𝜑 → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
127115, 126eqeltrid 2857 . . . . 5 (𝜑𝑇 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
128114, 127sseldd 3894 . . . 4 (𝜑𝑇 ∈ ℤ)
129 0red 10683 . . . . 5 (𝜑 → 0 ∈ ℝ)
13016nnred 11690 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℝ)
131128zred 12127 . . . . 5 (𝜑𝑇 ∈ ℝ)
13216nngt0d 11724 . . . . 5 (𝜑 → 0 < (!‘𝑀))
133 fvex 6672 . . . . . . . 8 (!‘𝑀) ∈ V
134133tpid2 4664 . . . . . . 7 (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
135 supxrub 12759 . . . . . . 7 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
136124, 134, 135sylancl 590 . . . . . 6 (𝜑 → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
137136, 115breqtrrdi 5075 . . . . 5 (𝜑 → (!‘𝑀) ≤ 𝑇)
138129, 130, 131, 132, 137ltletrd 10839 . . . 4 (𝜑 → 0 < 𝑇)
139 elnnz 12031 . . . 4 (𝑇 ∈ ℕ ↔ (𝑇 ∈ ℤ ∧ 0 < 𝑇))
140128, 138, 139sylanbrc 587 . . 3 (𝜑𝑇 ∈ ℕ)
141 prmunb 16306 . . 3 (𝑇 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
142140, 141syl 17 . 2 (𝜑 → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
14313ad2ant1 1131 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
144 etransclem48.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
1451443ad2ant1 1131 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑄‘e) = 0)
146 etransclem48.a0 . . . . 5 (𝜑 → (𝐴‘0) ≠ 0)
1471463ad2ant1 1131 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ≠ 0)
148 simp2 1135 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℙ)
1499zcnd 12128 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℂ)
1501493ad2ant1 1131 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ∈ ℂ)
151150abscld 14845 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ∈ ℝ)
1521313ad2ant1 1131 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 ∈ ℝ)
153 prmz 16072 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
154153zred 12127 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
1551543ad2ant2 1132 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℝ)
156124adantr 485 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
157 fvex 6672 . . . . . . . . 9 (abs‘(𝐴‘0)) ∈ V
158157tpid1 4662 . . . . . . . 8 (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
159 supxrub 12759 . . . . . . . 8 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
160156, 158, 159sylancl 590 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
161160, 115breqtrrdi 5075 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ 𝑇)
1621613adant3 1130 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ≤ 𝑇)
163 simp3 1136 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 < 𝑝)
164151, 152, 155, 162, 163lelttrd 10837 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) < 𝑝)
1651303ad2ant1 1131 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ∈ ℝ)
1661373ad2ant1 1131 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ≤ 𝑇)
167165, 152, 155, 166, 163lelttrd 10837 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) < 𝑝)
16834a1i 11 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))))
169 oveq2 7159 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → ((𝑀↑(𝑀 + 1))↑𝑛) = ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)))
170 fveq2 6659 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (!‘𝑛) = (!‘(𝑝 − 1)))
171169, 170oveq12d 7169 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) = (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))))
172168, 171oveq12d 7169 . . . . . . . 8 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
173 prmnn 16071 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
174 nnm1nn0 11976 . . . . . . . . . 10 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
175173, 174syl 17 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℕ0)
176175adantl 486 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
17758adantr 485 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
17854adantr 485 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
179178, 176expcld 13561 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℂ)
180175faccld 13695 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℕ)
181180nncnd 11691 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℂ)
182181adantl 486 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℂ)
183180nnne0d 11725 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ≠ 0)
184183adantl 486 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ≠ 0)
185179, 182, 184divcld 11455 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℂ)
186177, 185mulcld 10700 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℂ)
18728, 172, 176, 186fvmptd3 6783 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
188187eqcomd 2765 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1891883adant3 1130 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1901123ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℤ)
191 1zzd 12053 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 1 ∈ ℤ)
192153, 191zsubcld 12132 . . . . . . . . . 10 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℤ)
1931923ad2ant2 1132 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ ℤ)
194190zred 12127 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℝ)
195 tpid3g 4666 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℤ → 𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
196112, 195syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
197 supxrub 12759 . . . . . . . . . . . . . 14 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → 𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
198124, 196, 197syl2anc 588 . . . . . . . . . . . . 13 (𝜑𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
199198, 115breqtrrdi 5075 . . . . . . . . . . . 12 (𝜑𝐼𝑇)
2001993ad2ant1 1131 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼𝑇)
201194, 152, 155, 200, 163lelttrd 10837 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 < 𝑝)
2021533ad2ant2 1132 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℤ)
203 zltlem1 12075 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
204190, 202, 203syl2anc 588 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
205201, 204mpbid 235 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ≤ (𝑝 − 1))
206 eluz2 12289 . . . . . . . . 9 ((𝑝 − 1) ∈ (ℤ𝐼) ↔ (𝐼 ∈ ℤ ∧ (𝑝 − 1) ∈ ℤ ∧ 𝐼 ≤ (𝑝 − 1)))
207190, 193, 205, 206syl3anbrc 1341 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ (ℤ𝐼))
2081113ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
209 fveq2 6659 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (ℤ𝑖) = (ℤ𝐼))
210209raleqdv 3330 . . . . . . . . . . 11 (𝑖 = 𝐼 → (∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1 ↔ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
211210elrab 3603 . . . . . . . . . 10 (𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ↔ (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
212208, 211sylib 221 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
213212simprd 500 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1)
214 nfcv 2920 . . . . . . . . . . 11 𝑛abs
215 nfcv 2920 . . . . . . . . . . . 12 𝑛(𝑝 − 1)
21630, 215nffv 6669 . . . . . . . . . . 11 𝑛(𝑆‘(𝑝 − 1))
217214, 216nffv 6669 . . . . . . . . . 10 𝑛(abs‘(𝑆‘(𝑝 − 1)))
218 nfcv 2920 . . . . . . . . . 10 𝑛 <
219 nfcv 2920 . . . . . . . . . 10 𝑛1
220217, 218, 219nfbr 5080 . . . . . . . . 9 𝑛(abs‘(𝑆‘(𝑝 − 1))) < 1
221 2fveq3 6664 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (abs‘(𝑆𝑛)) = (abs‘(𝑆‘(𝑝 − 1))))
222221breq1d 5043 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → ((abs‘(𝑆𝑛)) < 1 ↔ (abs‘(𝑆‘(𝑝 − 1))) < 1))
223220, 222rspc 3530 . . . . . . . 8 ((𝑝 − 1) ∈ (ℤ𝐼) → (∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1 → (abs‘(𝑆‘(𝑝 − 1))) < 1))
224207, 213, 223sylc 65 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝑆‘(𝑝 − 1))) < 1)
225171oveq2d 7167 . . . . . . . . . . 11 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
226 ovexd 7186 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ V)
22728, 225, 176, 226fvmptd3 6783 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
22815nn0red 11996 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
229228, 53reexpcld 13578 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
230228, 229remulcld 10710 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
231230adantr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
23249, 231remulcld 10710 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23335, 232fsumrecl 15140 . . . . . . . . . . . . 13 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23434, 233eqeltrid 2857 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
235234adantr 485 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝐶 ∈ ℝ)
236229adantr 485 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℝ)
237236, 176reexpcld 13578 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℝ)
238180nnred 11690 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℝ)
239238adantl 486 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℝ)
240237, 239, 184redivcld 11507 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℝ)
241235, 240remulcld 10710 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℝ)
242227, 241eqeltrd 2853 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
2432423adant3 1130 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
244 1red 10681 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 1 ∈ ℝ)
245243, 244absltd 14838 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ((abs‘(𝑆‘(𝑝 − 1))) < 1 ↔ (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1)))
246224, 245mpbid 235 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1))
247246simprd 500 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) < 1)
248189, 247eqbrtrd 5055 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) < 1)
249 etransclem6 43249 . . . 4 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑝 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑝)))
250 eqid 2759 . . . 4 Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥)
251 eqid 2759 . . . 4 𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1)))
252143, 145, 4, 147, 12, 148, 164, 167, 248, 249, 250, 251etransclem47 43290 . . 3 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
253252rexlimdv3a 3211 . 2 (𝜑 → (∃𝑝 ∈ ℙ 𝑇 < 𝑝 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)))
254142, 253mpd 15 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  wrex 3072  {crab 3075  Vcvv 3410  cdif 3856  wss 3859  c0 4226  {csn 4523  {ctp 4527   class class class wbr 5033  cmpt 5113   Or wor 5443  wf 6332  cfv 6336  (class class class)co 7151  Fincfn 8528  supcsup 8938  infcinf 8939  cc 10574  cr 10575  0cc0 10576  1c1 10577   + caddc 10579   · cmul 10581  *cxr 10713   < clt 10714  cle 10715  cmin 10909  -cneg 10910   / cdiv 11336  cn 11675  0cn0 11935  cz 12021  cuz 12283  +crp 12431  (,)cioo 12780  ...cfz 12940  cexp 13480  !cfa 13684  abscabs 14642  cli 14890  Σcsu 15091  cprod 15308  eceu 15465  cprime 16068  citg 24319  0𝑝c0p 24370  Polycply 24881  coeffccoe 24883  degcdgr 24884  𝑐ccxp 25247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9138  ax-cc 9896  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-pre-sup 10654  ax-addf 10655  ax-mulf 10656
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-symdif 4148  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-ofr 7407  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-omul 8118  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-fi 8909  df-sup 8940  df-inf 8941  df-oi 9008  df-dju 9364  df-card 9402  df-acn 9405  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-q 12390  df-rp 12432  df-xneg 12549  df-xadd 12550  df-xmul 12551  df-ioo 12784  df-ioc 12785  df-ico 12786  df-icc 12787  df-fz 12941  df-fzo 13084  df-fl 13212  df-mod 13288  df-seq 13420  df-exp 13481  df-fac 13685  df-bc 13714  df-hash 13742  df-shft 14475  df-cj 14507  df-re 14508  df-im 14509  df-sqrt 14643  df-abs 14644  df-limsup 14877  df-clim 14894  df-rlim 14895  df-sum 15092  df-prod 15309  df-ef 15470  df-e 15471  df-sin 15472  df-cos 15473  df-tan 15474  df-pi 15475  df-dvds 15657  df-gcd 15895  df-prm 16069  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-starv 16639  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-unif 16647  df-hom 16648  df-cco 16649  df-rest 16755  df-topn 16756  df-0g 16774  df-gsum 16775  df-topgen 16776  df-pt 16777  df-prds 16780  df-xrs 16834  df-qtop 16839  df-imas 16840  df-xps 16842  df-mre 16916  df-mrc 16917  df-acs 16919  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-submnd 18024  df-mulg 18293  df-cntz 18515  df-cmn 18976  df-psmet 20159  df-xmet 20160  df-met 20161  df-bl 20162  df-mopn 20163  df-fbas 20164  df-fg 20165  df-cnfld 20168  df-top 21595  df-topon 21612  df-topsp 21634  df-bases 21647  df-cld 21720  df-ntr 21721  df-cls 21722  df-nei 21799  df-lp 21837  df-perf 21838  df-cn 21928  df-cnp 21929  df-haus 22016  df-cmp 22088  df-tx 22263  df-hmeo 22456  df-fil 22547  df-fm 22639  df-flim 22640  df-flf 22641  df-xms 23023  df-ms 23024  df-tms 23025  df-cncf 23580  df-ovol 24165  df-vol 24166  df-mbf 24320  df-itg1 24321  df-itg2 24322  df-ibl 24323  df-itg 24324  df-0p 24371  df-limc 24566  df-dv 24567  df-dvn 24568  df-ply 24885  df-coe 24887  df-dgr 24888  df-log 25248  df-cxp 25249
This theorem is referenced by:  etransc  43292
  Copyright terms: Public domain W3C validator