Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpsscd Structured version   Visualization version   GIF version

Theorem tpsscd 32516
Description: If an ordered triple is a subset of a class, the third element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
tpsscd.1 (𝜑𝐶𝑉)
tpsscd.2 (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Assertion
Ref Expression
tpsscd (𝜑𝐶𝐷)

Proof of Theorem tpsscd
StepHypRef Expression
1 tpsscd.1 . 2 (𝜑𝐶𝑉)
2 tprot 4702 . . . 4 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
3 tprot 4702 . . . 4 {𝐵, 𝐶, 𝐴} = {𝐶, 𝐴, 𝐵}
42, 3eqtri 2754 . . 3 {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}
5 tpsscd.2 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
64, 5eqsstrrid 3974 . 2 (𝜑 → {𝐶, 𝐴, 𝐵} ⊆ 𝐷)
71, 6tpssad 32514 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3902  {ctp 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-sn 4577  df-pr 4579  df-tp 4581
This theorem is referenced by:  constrlccllem  33761  constrcccllem  33762
  Copyright terms: Public domain W3C validator