| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tpsscd | Structured version Visualization version GIF version | ||
| Description: If an ordered triple is a subset of a class, the third element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| tpsscd.1 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| tpsscd.2 | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Ref | Expression |
|---|---|
| tpsscd | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpsscd.1 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 2 | tprot 4721 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
| 3 | tprot 4721 | . . . 4 ⊢ {𝐵, 𝐶, 𝐴} = {𝐶, 𝐴, 𝐵} | |
| 4 | 2, 3 | eqtri 2753 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵} |
| 5 | tpsscd.2 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) | |
| 6 | 4, 5 | eqsstrrid 3994 | . 2 ⊢ (𝜑 → {𝐶, 𝐴, 𝐵} ⊆ 𝐷) |
| 7 | 1, 6 | tpssad 32475 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3922 {ctp 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-sn 4598 df-pr 4600 df-tp 4602 |
| This theorem is referenced by: constrlccllem 33751 constrcccllem 33752 |
| Copyright terms: Public domain | W3C validator |