| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrid 3982 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: 3sstr3g 3996 relcnvtrg 6227 fimacnvdisj 6720 dffv2 6938 f1ompt 7065 abnexg 7712 fnwelem 8087 tfrlem15 8337 omxpenlem 9019 hartogslem1 9471 ttrcltr 9645 dfttrcl2 9653 infxpidm2 9946 alephgeom 10011 infenaleph 10020 cfflb 10188 pwfseqlem5 10592 imasvscafn 17476 mrieqvlemd 17566 cnvps 18513 dirdm 18535 tsrdir 18539 frmdss2 18766 subdrgint 20688 iinopn 22765 neitr 23043 xkococnlem 23522 tgpconncomp 23976 trcfilu 24157 mbfconstlem 25504 itg2seq 25619 limcdif 25753 dvres2lem 25787 c1lip3 25880 lhop 25897 plyeq0 26092 dchrghm 27143 negsbdaylem 27938 precsexlem10 28094 uspgrupgrushgr 29082 upgrreslem 29207 umgrreslem 29208 umgrres1 29217 umgr2v2e 29429 chssoc 31398 tpssbd 32442 tpsscd 32443 gsumhashmul 32974 pmtrcnelor 33021 tocycfvres1 33040 tocycfvres2 33041 elrgspnsubrunlem2 33172 dimkerim 33596 hauseqcn 33861 carsgclctunlem3 34284 cvmliftmolem1 35241 cvmlift2lem9a 35263 cvmlift2lem9 35271 cnres2 37730 rngunsnply 43131 proot1hash 43157 omabs2 43294 clcnvlem 43585 cnvtrcl0 43588 trrelsuperrel2dg 43633 brtrclfv2 43689 imo72b2lem1 44131 fourierdlem92 46169 vsetrec 49665 |
| Copyright terms: Public domain | W3C validator |