| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2744 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrid 3997 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: 3sstr3g 4011 relcnvtrg 6255 fimacnvdisj 6756 dffv2 6974 f1ompt 7101 abnexg 7750 fnwelem 8130 tfrlem15 8406 omxpenlem 9087 hartogslem1 9556 ttrcltr 9730 dfttrcl2 9738 infxpidm2 10031 alephgeom 10096 infenaleph 10105 cfflb 10273 pwfseqlem5 10677 imasvscafn 17551 mrieqvlemd 17641 cnvps 18588 dirdm 18610 tsrdir 18614 frmdss2 18841 subdrgint 20763 iinopn 22840 neitr 23118 xkococnlem 23597 tgpconncomp 24051 trcfilu 24232 mbfconstlem 25580 itg2seq 25695 limcdif 25829 dvres2lem 25863 c1lip3 25956 lhop 25973 plyeq0 26168 dchrghm 27219 negsbdaylem 28014 precsexlem10 28170 uspgrupgrushgr 29158 upgrreslem 29283 umgrreslem 29284 umgrres1 29293 umgr2v2e 29505 chssoc 31477 tpssbd 32521 tpsscd 32522 gsumhashmul 33055 pmtrcnelor 33102 tocycfvres1 33121 tocycfvres2 33122 elrgspnsubrunlem2 33243 dimkerim 33667 hauseqcn 33929 carsgclctunlem3 34352 cvmliftmolem1 35303 cvmlift2lem9a 35325 cvmlift2lem9 35333 cnres2 37787 rngunsnply 43193 proot1hash 43219 omabs2 43356 clcnvlem 43647 cnvtrcl0 43650 trrelsuperrel2dg 43695 brtrclfv2 43751 imo72b2lem1 44193 fourierdlem92 46227 vsetrec 49567 |
| Copyright terms: Public domain | W3C validator |