| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrid 3985 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: 3sstr3g 3999 relcnvtrg 6239 fimacnvdisj 6738 dffv2 6956 f1ompt 7083 abnexg 7732 fnwelem 8110 tfrlem15 8360 omxpenlem 9042 hartogslem1 9495 ttrcltr 9669 dfttrcl2 9677 infxpidm2 9970 alephgeom 10035 infenaleph 10044 cfflb 10212 pwfseqlem5 10616 imasvscafn 17500 mrieqvlemd 17590 cnvps 18537 dirdm 18559 tsrdir 18563 frmdss2 18790 subdrgint 20712 iinopn 22789 neitr 23067 xkococnlem 23546 tgpconncomp 24000 trcfilu 24181 mbfconstlem 25528 itg2seq 25643 limcdif 25777 dvres2lem 25811 c1lip3 25904 lhop 25921 plyeq0 26116 dchrghm 27167 negsbdaylem 27962 precsexlem10 28118 uspgrupgrushgr 29106 upgrreslem 29231 umgrreslem 29232 umgrres1 29241 umgr2v2e 29453 chssoc 31425 tpssbd 32469 tpsscd 32470 gsumhashmul 33001 pmtrcnelor 33048 tocycfvres1 33067 tocycfvres2 33068 elrgspnsubrunlem2 33199 dimkerim 33623 hauseqcn 33888 carsgclctunlem3 34311 cvmliftmolem1 35268 cvmlift2lem9a 35290 cvmlift2lem9 35298 cnres2 37757 rngunsnply 43158 proot1hash 43184 omabs2 43321 clcnvlem 43612 cnvtrcl0 43615 trrelsuperrel2dg 43660 brtrclfv2 43716 imo72b2lem1 44158 fourierdlem92 46196 vsetrec 49692 |
| Copyright terms: Public domain | W3C validator |