| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2742 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrid 3969 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 |
| This theorem is referenced by: 3sstr3g 3983 relcnvtrg 6222 fimacnvdisj 6709 dffv2 6926 f1ompt 7053 abnexg 7698 fnwelem 8070 tfrlem15 8320 omxpenlem 9002 hartogslem1 9439 ttrcltr 9617 dfttrcl2 9625 infxpidm2 9919 alephgeom 9984 infenaleph 9993 cfflb 10161 pwfseqlem5 10565 imasvscafn 17449 mrieqvlemd 17543 cnvps 18492 dirdm 18514 tsrdir 18518 frmdss2 18779 subdrgint 20727 iinopn 22837 neitr 23115 xkococnlem 23594 tgpconncomp 24048 trcfilu 24228 mbfconstlem 25575 itg2seq 25690 limcdif 25824 dvres2lem 25858 c1lip3 25951 lhop 25968 plyeq0 26163 dchrghm 27214 negsbdaylem 28018 precsexlem10 28174 uspgrupgrushgr 29178 upgrreslem 29303 umgrreslem 29304 umgrres1 29313 umgr2v2e 29525 chssoc 31497 tpssbd 32541 tpsscd 32542 gsumhashmul 33078 pmtrcnelor 33101 tocycfvres1 33120 tocycfvres2 33121 elrgspnsubrunlem2 33258 dimkerim 33712 hauseqcn 33983 carsgclctunlem3 34405 tz9.1regs 35202 cvmliftmolem1 35397 cvmlift2lem9a 35419 cvmlift2lem9 35427 cnres2 37876 rngunsnply 43326 proot1hash 43352 omabs2 43489 clcnvlem 43780 cnvtrcl0 43783 trrelsuperrel2dg 43828 brtrclfv2 43884 imo72b2lem1 44326 fourierdlem92 46358 vsetrec 49864 |
| Copyright terms: Public domain | W3C validator |