| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrid 3976 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 |
| This theorem is referenced by: 3sstr3g 3990 relcnvtrg 6219 fimacnvdisj 6706 dffv2 6922 f1ompt 7049 abnexg 7696 fnwelem 8071 tfrlem15 8321 omxpenlem 9002 hartogslem1 9453 ttrcltr 9631 dfttrcl2 9639 infxpidm2 9930 alephgeom 9995 infenaleph 10004 cfflb 10172 pwfseqlem5 10576 imasvscafn 17460 mrieqvlemd 17554 cnvps 18503 dirdm 18525 tsrdir 18529 frmdss2 18756 subdrgint 20707 iinopn 22806 neitr 23084 xkococnlem 23563 tgpconncomp 24017 trcfilu 24198 mbfconstlem 25545 itg2seq 25660 limcdif 25794 dvres2lem 25828 c1lip3 25921 lhop 25938 plyeq0 26133 dchrghm 27184 negsbdaylem 27986 precsexlem10 28142 uspgrupgrushgr 29143 upgrreslem 29268 umgrreslem 29269 umgrres1 29278 umgr2v2e 29490 chssoc 31459 tpssbd 32503 tpsscd 32504 gsumhashmul 33033 pmtrcnelor 33052 tocycfvres1 33071 tocycfvres2 33072 elrgspnsubrunlem2 33207 dimkerim 33613 hauseqcn 33884 carsgclctunlem3 34307 tz9.1regs 35086 cvmliftmolem1 35273 cvmlift2lem9a 35295 cvmlift2lem9 35303 cnres2 37762 rngunsnply 43162 proot1hash 43188 omabs2 43325 clcnvlem 43616 cnvtrcl0 43619 trrelsuperrel2dg 43664 brtrclfv2 43720 imo72b2lem1 44162 fourierdlem92 46199 vsetrec 49708 |
| Copyright terms: Public domain | W3C validator |