Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2748 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrid 3970 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 |
This theorem is referenced by: relcnvtrg 6174 fimacnvdisj 6661 dffv2 6872 fimacnvOLD 6957 f1ompt 6994 abnexg 7615 fnwelem 7981 tfrlem15 8232 omxpenlem 8869 hartogslem1 9310 ttrcltr 9483 dfttrcl2 9491 infxpidm2 9782 alephgeom 9847 infenaleph 9856 cfflb 10024 pwfseqlem5 10428 imasvscafn 17257 mrieqvlemd 17347 cnvps 18305 dirdm 18327 tsrdir 18331 frmdss2 18511 subdrgint 20080 iinopn 22060 neitr 22340 xkococnlem 22819 tgpconncomp 23273 trcfilu 23455 mbfconstlem 24800 itg2seq 24916 limcdif 25049 dvres2lem 25083 c1lip3 25172 lhop 25189 plyeq0 25381 dchrghm 26413 uspgrupgrushgr 27556 upgrreslem 27680 umgrreslem 27681 umgrres1 27690 umgr2v2e 27901 chssoc 29867 gsumhashmul 31325 pmtrcnelor 31369 tocycfvres1 31386 tocycfvres2 31387 dimkerim 31717 hauseqcn 31857 carsgclctunlem3 32296 cvmliftmolem1 33252 cvmlift2lem9a 33274 cvmlift2lem9 33282 cnres2 35930 rngunsnply 41005 proot1hash 41032 clcnvlem 41238 cnvtrcl0 41241 trrelsuperrel2dg 41286 brtrclfv2 41342 imo72b2lem1 41787 fourierdlem92 43746 vsetrec 46419 |
Copyright terms: Public domain | W3C validator |