![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2744 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrid 4044 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 |
This theorem is referenced by: relcnvtrg 6288 fimacnvdisj 6787 dffv2 7004 f1ompt 7131 abnexg 7775 fnwelem 8155 tfrlem15 8431 omxpenlem 9112 hartogslem1 9580 ttrcltr 9754 dfttrcl2 9762 infxpidm2 10055 alephgeom 10120 infenaleph 10129 cfflb 10297 pwfseqlem5 10701 imasvscafn 17584 mrieqvlemd 17674 cnvps 18636 dirdm 18658 tsrdir 18662 frmdss2 18889 subdrgint 20821 iinopn 22924 neitr 23204 xkococnlem 23683 tgpconncomp 24137 trcfilu 24319 mbfconstlem 25676 itg2seq 25792 limcdif 25926 dvres2lem 25960 c1lip3 26053 lhop 26070 plyeq0 26265 dchrghm 27315 negsbdaylem 28103 precsexlem10 28255 uspgrupgrushgr 29211 upgrreslem 29336 umgrreslem 29337 umgrres1 29346 umgr2v2e 29558 chssoc 31525 gsumhashmul 33047 pmtrcnelor 33094 tocycfvres1 33113 tocycfvres2 33114 dimkerim 33655 hauseqcn 33859 carsgclctunlem3 34302 cvmliftmolem1 35266 cvmlift2lem9a 35288 cvmlift2lem9 35296 cnres2 37750 rngunsnply 43158 proot1hash 43184 omabs2 43322 clcnvlem 43613 cnvtrcl0 43616 trrelsuperrel2dg 43661 brtrclfv2 43717 imo72b2lem1 44159 fourierdlem92 46154 vsetrec 48934 |
Copyright terms: Public domain | W3C validator |