![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2749 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrid 4057 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: relcnvtrg 6297 fimacnvdisj 6799 dffv2 7017 fimacnvOLD 7104 f1ompt 7145 abnexg 7791 fnwelem 8172 tfrlem15 8448 omxpenlem 9139 hartogslem1 9611 ttrcltr 9785 dfttrcl2 9793 infxpidm2 10086 alephgeom 10151 infenaleph 10160 cfflb 10328 pwfseqlem5 10732 imasvscafn 17597 mrieqvlemd 17687 cnvps 18648 dirdm 18670 tsrdir 18674 frmdss2 18898 subdrgint 20826 iinopn 22929 neitr 23209 xkococnlem 23688 tgpconncomp 24142 trcfilu 24324 mbfconstlem 25681 itg2seq 25797 limcdif 25931 dvres2lem 25965 c1lip3 26058 lhop 26075 plyeq0 26270 dchrghm 27318 negsbdaylem 28106 precsexlem10 28258 uspgrupgrushgr 29214 upgrreslem 29339 umgrreslem 29340 umgrres1 29349 umgr2v2e 29561 chssoc 31528 gsumhashmul 33040 pmtrcnelor 33084 tocycfvres1 33103 tocycfvres2 33104 dimkerim 33640 hauseqcn 33844 carsgclctunlem3 34285 cvmliftmolem1 35249 cvmlift2lem9a 35271 cvmlift2lem9 35279 cnres2 37723 rngunsnply 43130 proot1hash 43156 omabs2 43294 clcnvlem 43585 cnvtrcl0 43588 trrelsuperrel2dg 43633 brtrclfv2 43689 imo72b2lem1 44131 fourierdlem92 46119 vsetrec 48795 |
Copyright terms: Public domain | W3C validator |