| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2740 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrid 3968 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: 3sstr3g 3982 relcnvtrg 6209 fimacnvdisj 6696 dffv2 6912 f1ompt 7039 abnexg 7684 fnwelem 8056 tfrlem15 8306 omxpenlem 8986 hartogslem1 9423 ttrcltr 9601 dfttrcl2 9609 infxpidm2 9903 alephgeom 9968 infenaleph 9977 cfflb 10145 pwfseqlem5 10549 imasvscafn 17436 mrieqvlemd 17530 cnvps 18479 dirdm 18501 tsrdir 18505 frmdss2 18766 subdrgint 20713 iinopn 22812 neitr 23090 xkococnlem 23569 tgpconncomp 24023 trcfilu 24203 mbfconstlem 25550 itg2seq 25665 limcdif 25799 dvres2lem 25833 c1lip3 25926 lhop 25943 plyeq0 26138 dchrghm 27189 negsbdaylem 27993 precsexlem10 28149 uspgrupgrushgr 29152 upgrreslem 29277 umgrreslem 29278 umgrres1 29287 umgr2v2e 29499 chssoc 31468 tpssbd 32512 tpsscd 32513 gsumhashmul 33033 pmtrcnelor 33052 tocycfvres1 33071 tocycfvres2 33072 elrgspnsubrunlem2 33207 dimkerim 33632 hauseqcn 33903 carsgclctunlem3 34325 tz9.1regs 35122 cvmliftmolem1 35317 cvmlift2lem9a 35339 cvmlift2lem9 35347 cnres2 37803 rngunsnply 43202 proot1hash 43228 omabs2 43365 clcnvlem 43656 cnvtrcl0 43659 trrelsuperrel2dg 43704 brtrclfv2 43760 imo72b2lem1 44202 fourierdlem92 46236 vsetrec 49735 |
| Copyright terms: Public domain | W3C validator |