Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2747 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrid 3965 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: relcnvtrg 6159 fimacnvdisj 6636 dffv2 6845 fimacnvOLD 6930 f1ompt 6967 abnexg 7584 fnwelem 7943 tfrlem15 8194 omxpenlem 8813 hartogslem1 9231 infxpidm2 9704 alephgeom 9769 infenaleph 9778 cfflb 9946 pwfseqlem5 10350 imasvscafn 17165 mrieqvlemd 17255 cnvps 18211 dirdm 18233 tsrdir 18237 frmdss2 18417 subdrgint 19986 iinopn 21959 neitr 22239 xkococnlem 22718 tgpconncomp 23172 trcfilu 23354 mbfconstlem 24696 itg2seq 24812 limcdif 24945 dvres2lem 24979 c1lip3 25068 lhop 25085 plyeq0 25277 dchrghm 26309 uspgrupgrushgr 27450 upgrreslem 27574 umgrreslem 27575 umgrres1 27584 umgr2v2e 27795 chssoc 29759 gsumhashmul 31218 pmtrcnelor 31262 tocycfvres1 31279 tocycfvres2 31280 dimkerim 31610 hauseqcn 31750 carsgclctunlem3 32187 cvmliftmolem1 33143 cvmlift2lem9a 33165 cvmlift2lem9 33173 ttrcltr 33702 dfttrcl2 33710 cnres2 35848 rngunsnply 40914 proot1hash 40941 clcnvlem 41120 cnvtrcl0 41123 trrelsuperrel2dg 41168 brtrclfv2 41224 imo72b2lem1 41669 fourierdlem92 43629 vsetrec 46294 |
Copyright terms: Public domain | W3C validator |