MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsstrrid Structured version   Visualization version   GIF version

Theorem eqsstrrid 3983
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrrid.1 𝐵 = 𝐴
eqsstrrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqsstrrid (𝜑𝐴𝐶)

Proof of Theorem eqsstrrid
StepHypRef Expression
1 eqsstrrid.1 . . 3 𝐵 = 𝐴
21eqcomi 2738 . 2 𝐴 = 𝐵
3 eqsstrrid.2 . 2 (𝜑𝐵𝐶)
42, 3eqsstrid 3982 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3928
This theorem is referenced by:  3sstr3g  3996  relcnvtrg  6227  fimacnvdisj  6720  dffv2  6938  f1ompt  7065  abnexg  7712  fnwelem  8087  tfrlem15  8337  omxpenlem  9019  hartogslem1  9471  ttrcltr  9645  dfttrcl2  9653  infxpidm2  9946  alephgeom  10011  infenaleph  10020  cfflb  10188  pwfseqlem5  10592  imasvscafn  17476  mrieqvlemd  17566  cnvps  18513  dirdm  18535  tsrdir  18539  frmdss2  18766  subdrgint  20688  iinopn  22765  neitr  23043  xkococnlem  23522  tgpconncomp  23976  trcfilu  24157  mbfconstlem  25504  itg2seq  25619  limcdif  25753  dvres2lem  25787  c1lip3  25880  lhop  25897  plyeq0  26092  dchrghm  27143  negsbdaylem  27938  precsexlem10  28094  uspgrupgrushgr  29082  upgrreslem  29207  umgrreslem  29208  umgrres1  29217  umgr2v2e  29429  chssoc  31398  tpssbd  32442  tpsscd  32443  gsumhashmul  32974  pmtrcnelor  33021  tocycfvres1  33040  tocycfvres2  33041  elrgspnsubrunlem2  33172  dimkerim  33596  hauseqcn  33861  carsgclctunlem3  34284  cvmliftmolem1  35241  cvmlift2lem9a  35263  cvmlift2lem9  35271  cnres2  37730  rngunsnply  43131  proot1hash  43157  omabs2  43294  clcnvlem  43585  cnvtrcl0  43588  trrelsuperrel2dg  43633  brtrclfv2  43689  imo72b2lem1  44131  fourierdlem92  46169  vsetrec  49665
  Copyright terms: Public domain W3C validator