| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2739 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrid 3988 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: 3sstr3g 4002 relcnvtrg 6242 fimacnvdisj 6741 dffv2 6959 f1ompt 7086 abnexg 7735 fnwelem 8113 tfrlem15 8363 omxpenlem 9047 hartogslem1 9502 ttrcltr 9676 dfttrcl2 9684 infxpidm2 9977 alephgeom 10042 infenaleph 10051 cfflb 10219 pwfseqlem5 10623 imasvscafn 17507 mrieqvlemd 17597 cnvps 18544 dirdm 18566 tsrdir 18570 frmdss2 18797 subdrgint 20719 iinopn 22796 neitr 23074 xkococnlem 23553 tgpconncomp 24007 trcfilu 24188 mbfconstlem 25535 itg2seq 25650 limcdif 25784 dvres2lem 25818 c1lip3 25911 lhop 25928 plyeq0 26123 dchrghm 27174 negsbdaylem 27969 precsexlem10 28125 uspgrupgrushgr 29113 upgrreslem 29238 umgrreslem 29239 umgrres1 29248 umgr2v2e 29460 chssoc 31432 tpssbd 32476 tpsscd 32477 gsumhashmul 33008 pmtrcnelor 33055 tocycfvres1 33074 tocycfvres2 33075 elrgspnsubrunlem2 33206 dimkerim 33630 hauseqcn 33895 carsgclctunlem3 34318 cvmliftmolem1 35275 cvmlift2lem9a 35297 cvmlift2lem9 35305 cnres2 37764 rngunsnply 43165 proot1hash 43191 omabs2 43328 clcnvlem 43619 cnvtrcl0 43622 trrelsuperrel2dg 43667 brtrclfv2 43723 imo72b2lem1 44165 fourierdlem92 46203 vsetrec 49696 |
| Copyright terms: Public domain | W3C validator |