Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsstrrid | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrid.1 | ⊢ 𝐵 = 𝐴 |
eqsstrrid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrrid | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2746 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqsstrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrid 3949 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ⊆ wss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 df-ss 3883 |
This theorem is referenced by: relcnvtrg 6130 fimacnvdisj 6597 dffv2 6806 fimacnvOLD 6891 f1ompt 6928 abnexg 7541 fnwelem 7898 tfrlem15 8128 omxpenlem 8746 hartogslem1 9158 infxpidm2 9631 alephgeom 9696 infenaleph 9705 cfflb 9873 pwfseqlem5 10277 imasvscafn 17042 mrieqvlemd 17132 cnvps 18084 dirdm 18106 tsrdir 18110 frmdss2 18290 subdrgint 19847 iinopn 21799 neitr 22077 xkococnlem 22556 tgpconncomp 23010 trcfilu 23191 mbfconstlem 24524 itg2seq 24640 limcdif 24773 dvres2lem 24807 c1lip3 24896 lhop 24913 plyeq0 25105 dchrghm 26137 uspgrupgrushgr 27268 upgrreslem 27392 umgrreslem 27393 umgrres1 27402 umgr2v2e 27613 chssoc 29577 gsumhashmul 31035 pmtrcnelor 31079 tocycfvres1 31096 tocycfvres2 31097 dimkerim 31422 hauseqcn 31562 carsgclctunlem3 31999 cvmliftmolem1 32956 cvmlift2lem9a 32978 cvmlift2lem9 32986 ttrcltr 33515 dfttrcl2 33523 cnres2 35658 rngunsnply 40701 proot1hash 40728 clcnvlem 40907 cnvtrcl0 40910 trrelsuperrel2dg 40956 brtrclfv2 41012 imo72b2lem1 41457 fourierdlem92 43414 vsetrec 46079 |
Copyright terms: Public domain | W3C validator |