![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tctr | Structured version Visualization version GIF version |
Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013.) |
Ref | Expression |
---|---|
tctr | ⊢ Tr (TC‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trint 5283 | . . . 4 ⊢ (∀𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
2 | vex 3477 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | sseq2 4008 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
4 | treq 5273 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
5 | 3, 4 | anbi12d 630 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ 𝑦 ∧ Tr 𝑦))) |
6 | 2, 5 | elab 3668 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ⊆ 𝑦 ∧ Tr 𝑦)) |
7 | 6 | simprbi 496 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} → Tr 𝑦) |
8 | 1, 7 | mprg 3066 | . . 3 ⊢ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
9 | tcvalg 9739 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
10 | treq 5273 | . . . 4 ⊢ ((TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} → (Tr (TC‘𝐴) ↔ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) |
12 | 8, 11 | mpbiri 258 | . 2 ⊢ (𝐴 ∈ V → Tr (TC‘𝐴)) |
13 | tr0 5278 | . . 3 ⊢ Tr ∅ | |
14 | fvprc 6883 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (TC‘𝐴) = ∅) | |
15 | treq 5273 | . . . 4 ⊢ ((TC‘𝐴) = ∅ → (Tr (TC‘𝐴) ↔ Tr ∅)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∅)) |
17 | 13, 16 | mpbiri 258 | . 2 ⊢ (¬ 𝐴 ∈ V → Tr (TC‘𝐴)) |
18 | 12, 17 | pm2.61i 182 | 1 ⊢ Tr (TC‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 Vcvv 3473 ⊆ wss 3948 ∅c0 4322 ∩ cint 4950 Tr wtr 5265 ‘cfv 6543 TCctc 9737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-tc 9738 |
This theorem is referenced by: tc2 9743 tcidm 9747 itunitc1 10421 |
Copyright terms: Public domain | W3C validator |