MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tctr Structured version   Visualization version   GIF version

Theorem tctr 9166
Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tctr Tr (TC‘𝐴)

Proof of Theorem tctr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trint 5152 . . . 4 (∀𝑦 ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
2 vex 3444 . . . . . 6 𝑦 ∈ V
3 sseq2 3941 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
4 treq 5142 . . . . . . 7 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
53, 4anbi12d 633 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴𝑦 ∧ Tr 𝑦)))
62, 5elab 3615 . . . . 5 (𝑦 ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴𝑦 ∧ Tr 𝑦))
76simprbi 500 . . . 4 (𝑦 ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → Tr 𝑦)
81, 7mprg 3120 . . 3 Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
9 tcvalg 9164 . . . 4 (𝐴 ∈ V → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
10 treq 5142 . . . 4 ((TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → (Tr (TC‘𝐴) ↔ Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}))
119, 10syl 17 . . 3 (𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}))
128, 11mpbiri 261 . 2 (𝐴 ∈ V → Tr (TC‘𝐴))
13 tr0 5147 . . 3 Tr ∅
14 fvprc 6638 . . . 4 𝐴 ∈ V → (TC‘𝐴) = ∅)
15 treq 5142 . . . 4 ((TC‘𝐴) = ∅ → (Tr (TC‘𝐴) ↔ Tr ∅))
1614, 15syl 17 . . 3 𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∅))
1713, 16mpbiri 261 . 2 𝐴 ∈ V → Tr (TC‘𝐴))
1812, 17pm2.61i 185 1 Tr (TC‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  Vcvv 3441  wss 3881  c0 4243   cint 4838  Tr wtr 5136  cfv 6324  TCctc 9162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-tc 9163
This theorem is referenced by:  tc2  9168  tcidm  9172  itunitc1  9831
  Copyright terms: Public domain W3C validator