MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tctr Structured version   Visualization version   GIF version

Theorem tctr 9741
Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tctr Tr (TC‘𝐴)

Proof of Theorem tctr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trint 5283 . . . 4 (∀𝑦 ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
2 vex 3477 . . . . . 6 𝑦 ∈ V
3 sseq2 4008 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
4 treq 5273 . . . . . . 7 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
53, 4anbi12d 630 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴𝑦 ∧ Tr 𝑦)))
62, 5elab 3668 . . . . 5 (𝑦 ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴𝑦 ∧ Tr 𝑦))
76simprbi 496 . . . 4 (𝑦 ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → Tr 𝑦)
81, 7mprg 3066 . . 3 Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
9 tcvalg 9739 . . . 4 (𝐴 ∈ V → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
10 treq 5273 . . . 4 ((TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → (Tr (TC‘𝐴) ↔ Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}))
119, 10syl 17 . . 3 (𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}))
128, 11mpbiri 258 . 2 (𝐴 ∈ V → Tr (TC‘𝐴))
13 tr0 5278 . . 3 Tr ∅
14 fvprc 6883 . . . 4 𝐴 ∈ V → (TC‘𝐴) = ∅)
15 treq 5273 . . . 4 ((TC‘𝐴) = ∅ → (Tr (TC‘𝐴) ↔ Tr ∅))
1614, 15syl 17 . . 3 𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∅))
1713, 16mpbiri 258 . 2 𝐴 ∈ V → Tr (TC‘𝐴))
1812, 17pm2.61i 182 1 Tr (TC‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1540  wcel 2105  {cab 2708  Vcvv 3473  wss 3948  c0 4322   cint 4950  Tr wtr 5265  cfv 6543  TCctc 9737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729  ax-inf2 9642
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-tc 9738
This theorem is referenced by:  tc2  9743  tcidm  9747  itunitc1  10421
  Copyright terms: Public domain W3C validator