Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tctr | Structured version Visualization version GIF version |
Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013.) |
Ref | Expression |
---|---|
tctr | ⊢ Tr (TC‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trint 5207 | . . . 4 ⊢ (∀𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
2 | vex 3436 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | sseq2 3947 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
4 | treq 5197 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
5 | 3, 4 | anbi12d 631 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ 𝑦 ∧ Tr 𝑦))) |
6 | 2, 5 | elab 3609 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ⊆ 𝑦 ∧ Tr 𝑦)) |
7 | 6 | simprbi 497 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} → Tr 𝑦) |
8 | 1, 7 | mprg 3078 | . . 3 ⊢ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
9 | tcvalg 9496 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
10 | treq 5197 | . . . 4 ⊢ ((TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} → (Tr (TC‘𝐴) ↔ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) |
12 | 8, 11 | mpbiri 257 | . 2 ⊢ (𝐴 ∈ V → Tr (TC‘𝐴)) |
13 | tr0 5202 | . . 3 ⊢ Tr ∅ | |
14 | fvprc 6766 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (TC‘𝐴) = ∅) | |
15 | treq 5197 | . . . 4 ⊢ ((TC‘𝐴) = ∅ → (Tr (TC‘𝐴) ↔ Tr ∅)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∅)) |
17 | 13, 16 | mpbiri 257 | . 2 ⊢ (¬ 𝐴 ∈ V → Tr (TC‘𝐴)) |
18 | 12, 17 | pm2.61i 182 | 1 ⊢ Tr (TC‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ∩ cint 4879 Tr wtr 5191 ‘cfv 6433 TCctc 9494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-tc 9495 |
This theorem is referenced by: tc2 9500 tcidm 9504 itunitc1 10176 |
Copyright terms: Public domain | W3C validator |