| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tctr | Structured version Visualization version GIF version | ||
| Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| Ref | Expression |
|---|---|
| tctr | ⊢ Tr (TC‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trint 5219 | . . . 4 ⊢ (∀𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 2 | vex 3442 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | sseq2 3964 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
| 4 | treq 5209 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
| 5 | 3, 4 | anbi12d 632 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ 𝑦 ∧ Tr 𝑦))) |
| 6 | 2, 5 | elab 3637 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ⊆ 𝑦 ∧ Tr 𝑦)) |
| 7 | 6 | simprbi 496 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} → Tr 𝑦) |
| 8 | 1, 7 | mprg 3050 | . . 3 ⊢ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 9 | tcvalg 9653 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 10 | treq 5209 | . . . 4 ⊢ ((TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} → (Tr (TC‘𝐴) ↔ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) |
| 12 | 8, 11 | mpbiri 258 | . 2 ⊢ (𝐴 ∈ V → Tr (TC‘𝐴)) |
| 13 | tr0 5214 | . . 3 ⊢ Tr ∅ | |
| 14 | fvprc 6818 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (TC‘𝐴) = ∅) | |
| 15 | treq 5209 | . . . 4 ⊢ ((TC‘𝐴) = ∅ → (Tr (TC‘𝐴) ↔ Tr ∅)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∅)) |
| 17 | 13, 16 | mpbiri 258 | . 2 ⊢ (¬ 𝐴 ∈ V → Tr (TC‘𝐴)) |
| 18 | 12, 17 | pm2.61i 182 | 1 ⊢ Tr (TC‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 ∩ cint 4899 Tr wtr 5202 ‘cfv 6486 TCctc 9651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-tc 9652 |
| This theorem is referenced by: tc2 9657 tcidm 9661 itunitc1 10333 tcfr 44937 |
| Copyright terms: Public domain | W3C validator |