| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tctr | Structured version Visualization version GIF version | ||
| Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| Ref | Expression |
|---|---|
| tctr | ⊢ Tr (TC‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trint 5217 | . . . 4 ⊢ (∀𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}Tr 𝑦 → Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | sseq2 3956 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
| 4 | treq 5207 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
| 5 | 3, 4 | anbi12d 632 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ 𝑦 ∧ Tr 𝑦))) |
| 6 | 2, 5 | elab 3630 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ⊆ 𝑦 ∧ Tr 𝑦)) |
| 7 | 6 | simprbi 496 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} → Tr 𝑦) |
| 8 | 1, 7 | mprg 3053 | . . 3 ⊢ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} |
| 9 | tcvalg 9632 | . . . 4 ⊢ (𝐴 ∈ V → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | |
| 10 | treq 5207 | . . . 4 ⊢ ((TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} → (Tr (TC‘𝐴) ↔ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)})) |
| 12 | 8, 11 | mpbiri 258 | . 2 ⊢ (𝐴 ∈ V → Tr (TC‘𝐴)) |
| 13 | tr0 5212 | . . 3 ⊢ Tr ∅ | |
| 14 | fvprc 6820 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (TC‘𝐴) = ∅) | |
| 15 | treq 5207 | . . . 4 ⊢ ((TC‘𝐴) = ∅ → (Tr (TC‘𝐴) ↔ Tr ∅)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Tr (TC‘𝐴) ↔ Tr ∅)) |
| 17 | 13, 16 | mpbiri 258 | . 2 ⊢ (¬ 𝐴 ∈ V → Tr (TC‘𝐴)) |
| 18 | 12, 17 | pm2.61i 182 | 1 ⊢ Tr (TC‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⊆ wss 3897 ∅c0 4282 ∩ cint 4897 Tr wtr 5200 ‘cfv 6487 TCctc 9630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-tc 9631 |
| This theorem is referenced by: tc2 9636 tcidm 9640 itunitc1 10317 tcfr 45061 |
| Copyright terms: Public domain | W3C validator |