MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trin Structured version   Visualization version   GIF version

Theorem trin 5146
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))

Proof of Theorem trin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3897 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 trss 5145 . . . . . 6 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
3 trss 5145 . . . . . 6 (Tr 𝐵 → (𝑥𝐵𝑥𝐵))
42, 3im2anan9 622 . . . . 5 ((Tr 𝐴 ∧ Tr 𝐵) → ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥𝐵)))
51, 4syl5bi 245 . . . 4 ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴𝐵) → (𝑥𝐴𝑥𝐵)))
6 ssin 4157 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
75, 6syl6ib 254 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴𝐵) → 𝑥 ⊆ (𝐴𝐵)))
87ralrimiv 3148 . 2 ((Tr 𝐴 ∧ Tr 𝐵) → ∀𝑥 ∈ (𝐴𝐵)𝑥 ⊆ (𝐴𝐵))
9 dftr3 5140 . 2 (Tr (𝐴𝐵) ↔ ∀𝑥 ∈ (𝐴𝐵)𝑥 ⊆ (𝐴𝐵))
108, 9sylibr 237 1 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wral 3106  cin 3880  wss 3881  Tr wtr 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ral 3111  df-v 3443  df-in 3888  df-ss 3898  df-uni 4801  df-tr 5137
This theorem is referenced by:  ordin  6189  tcmin  9167  ingru  10226  gruina  10229  dfon2lem4  33144
  Copyright terms: Public domain W3C validator