![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trin | Structured version Visualization version GIF version |
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
Ref | Expression |
---|---|
trin | ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3992 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | trss 5294 | . . . . . 6 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
3 | trss 5294 | . . . . . 6 ⊢ (Tr 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵)) | |
4 | 2, 3 | im2anan9 619 | . . . . 5 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
5 | 1, 4 | biimtrid 242 | . . . 4 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐵) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
6 | ssin 4260 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
7 | 5, 6 | imbitrdi 251 | . . 3 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
8 | 7 | ralrimiv 3151 | . 2 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥 ⊆ (𝐴 ∩ 𝐵)) |
9 | dftr3 5289 | . 2 ⊢ (Tr (𝐴 ∩ 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
10 | 8, 9 | sylibr 234 | 1 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∩ cin 3975 ⊆ wss 3976 Tr wtr 5283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-in 3983 df-ss 3993 df-uni 4932 df-tr 5284 |
This theorem is referenced by: ordin 6425 tcmin 9810 ingru 10884 gruina 10887 dfon2lem4 35750 |
Copyright terms: Public domain | W3C validator |