| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trin | Structured version Visualization version GIF version | ||
| Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
| Ref | Expression |
|---|---|
| trin | ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3967 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | trss 5270 | . . . . . 6 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 3 | trss 5270 | . . . . . 6 ⊢ (Tr 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵)) | |
| 4 | 2, 3 | im2anan9 620 | . . . . 5 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
| 5 | 1, 4 | biimtrid 242 | . . . 4 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐵) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
| 6 | ssin 4239 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
| 7 | 5, 6 | imbitrdi 251 | . . 3 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
| 8 | 7 | ralrimiv 3145 | . 2 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥 ⊆ (𝐴 ∩ 𝐵)) |
| 9 | dftr3 5265 | . 2 ⊢ (Tr (𝐴 ∩ 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ⊆ wss 3951 Tr wtr 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 df-in 3958 df-ss 3968 df-uni 4908 df-tr 5260 |
| This theorem is referenced by: ordin 6414 tcmin 9781 ingru 10855 gruina 10858 dfon2lem4 35787 |
| Copyright terms: Public domain | W3C validator |