![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trin | Structured version Visualization version GIF version |
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
Ref | Expression |
---|---|
trin | ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3947 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | trss 4896 | . . . . . 6 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
3 | trss 4896 | . . . . . 6 ⊢ (Tr 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵)) | |
4 | 2, 3 | im2anan9 606 | . . . . 5 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
5 | 1, 4 | syl5bi 232 | . . . 4 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐵) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵))) |
6 | ssin 3983 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
7 | 5, 6 | syl6ib 241 | . . 3 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
8 | 7 | ralrimiv 3114 | . 2 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥 ⊆ (𝐴 ∩ 𝐵)) |
9 | dftr3 4891 | . 2 ⊢ (Tr (𝐴 ∩ 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐵)𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
10 | 8, 9 | sylibr 224 | 1 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 ∩ cin 3722 ⊆ wss 3723 Tr wtr 4887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-v 3353 df-in 3730 df-ss 3737 df-uni 4576 df-tr 4888 |
This theorem is referenced by: ordin 5895 tcmin 8784 ingru 9842 gruina 9845 dfon2lem4 32026 |
Copyright terms: Public domain | W3C validator |