MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trin Structured version   Visualization version   GIF version

Theorem trin 5277
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))

Proof of Theorem trin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3964 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 trss 5276 . . . . . 6 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
3 trss 5276 . . . . . 6 (Tr 𝐵 → (𝑥𝐵𝑥𝐵))
42, 3im2anan9 620 . . . . 5 ((Tr 𝐴 ∧ Tr 𝐵) → ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥𝐵)))
51, 4biimtrid 241 . . . 4 ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴𝐵) → (𝑥𝐴𝑥𝐵)))
6 ssin 4230 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
75, 6imbitrdi 250 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → (𝑥 ∈ (𝐴𝐵) → 𝑥 ⊆ (𝐴𝐵)))
87ralrimiv 3145 . 2 ((Tr 𝐴 ∧ Tr 𝐵) → ∀𝑥 ∈ (𝐴𝐵)𝑥 ⊆ (𝐴𝐵))
9 dftr3 5271 . 2 (Tr (𝐴𝐵) ↔ ∀𝑥 ∈ (𝐴𝐵)𝑥 ⊆ (𝐴𝐵))
108, 9sylibr 233 1 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3061  cin 3947  wss 3948  Tr wtr 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-v 3476  df-in 3955  df-ss 3965  df-uni 4909  df-tr 5266
This theorem is referenced by:  ordin  6394  tcmin  9735  ingru  10809  gruina  10812  dfon2lem4  34753
  Copyright terms: Public domain W3C validator