MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tc0 Structured version   Visualization version   GIF version

Theorem tc0 9739
Description: The transitive closure of the empty set. (Contributed by Mario Carneiro, 4-Jun-2015.)
Assertion
Ref Expression
tc0 (TC‘∅) = ∅

Proof of Theorem tc0
StepHypRef Expression
1 ssid 3997 . . 3 ∅ ⊆ ∅
2 tr0 5269 . . 3 Tr ∅
3 0ex 5298 . . . 4 ∅ ∈ V
4 tcmin 9733 . . . 4 (∅ ∈ V → ((∅ ⊆ ∅ ∧ Tr ∅) → (TC‘∅) ⊆ ∅))
53, 4ax-mp 5 . . 3 ((∅ ⊆ ∅ ∧ Tr ∅) → (TC‘∅) ⊆ ∅)
61, 2, 5mp2an 689 . 2 (TC‘∅) ⊆ ∅
7 0ss 4389 . 2 ∅ ⊆ (TC‘∅)
86, 7eqssi 3991 1 (TC‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  wss 3941  c0 4315  Tr wtr 5256  cfv 6534  TCctc 9728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719  ax-inf2 9633
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-tc 9729
This theorem is referenced by:  tc00  9740
  Copyright terms: Public domain W3C validator