| Step | Hyp | Ref
| Expression |
| 1 | | r1funlim 9785 |
. . . . . 6
⊢ (Fun
𝑅1 ∧ Lim dom 𝑅1) |
| 2 | 1 | simpri 485 |
. . . . 5
⊢ Lim dom
𝑅1 |
| 3 | | limord 6418 |
. . . . 5
⊢ (Lim dom
𝑅1 → Ord dom 𝑅1) |
| 4 | | ordsson 7782 |
. . . . 5
⊢ (Ord dom
𝑅1 → dom 𝑅1 ⊆
On) |
| 5 | 2, 3, 4 | mp2b 10 |
. . . 4
⊢ dom
𝑅1 ⊆ On |
| 6 | 5 | sseli 3959 |
. . 3
⊢ (𝐴 ∈ dom
𝑅1 → 𝐴 ∈ On) |
| 7 | | fveq2 6881 |
. . . . . 6
⊢ (𝑥 = ∅ →
(𝑅1‘𝑥) =
(𝑅1‘∅)) |
| 8 | | r10 9787 |
. . . . . 6
⊢
(𝑅1‘∅) = ∅ |
| 9 | 7, 8 | eqtrdi 2787 |
. . . . 5
⊢ (𝑥 = ∅ →
(𝑅1‘𝑥) = ∅) |
| 10 | | treq 5242 |
. . . . 5
⊢
((𝑅1‘𝑥) = ∅ → (Tr
(𝑅1‘𝑥) ↔ Tr ∅)) |
| 11 | 9, 10 | syl 17 |
. . . 4
⊢ (𝑥 = ∅ → (Tr
(𝑅1‘𝑥) ↔ Tr ∅)) |
| 12 | | fveq2 6881 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘𝑦)) |
| 13 | | treq 5242 |
. . . . 5
⊢
((𝑅1‘𝑥) = (𝑅1‘𝑦) → (Tr
(𝑅1‘𝑥) ↔ Tr
(𝑅1‘𝑦))) |
| 14 | 12, 13 | syl 17 |
. . . 4
⊢ (𝑥 = 𝑦 → (Tr
(𝑅1‘𝑥) ↔ Tr
(𝑅1‘𝑦))) |
| 15 | | fveq2 6881 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘suc 𝑦)) |
| 16 | | treq 5242 |
. . . . 5
⊢
((𝑅1‘𝑥) = (𝑅1‘suc 𝑦) → (Tr
(𝑅1‘𝑥) ↔ Tr (𝑅1‘suc
𝑦))) |
| 17 | 15, 16 | syl 17 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (Tr
(𝑅1‘𝑥) ↔ Tr (𝑅1‘suc
𝑦))) |
| 18 | | fveq2 6881 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑅1‘𝑥) =
(𝑅1‘𝐴)) |
| 19 | | treq 5242 |
. . . . 5
⊢
((𝑅1‘𝑥) = (𝑅1‘𝐴) → (Tr
(𝑅1‘𝑥) ↔ Tr
(𝑅1‘𝐴))) |
| 20 | 18, 19 | syl 17 |
. . . 4
⊢ (𝑥 = 𝐴 → (Tr
(𝑅1‘𝑥) ↔ Tr
(𝑅1‘𝐴))) |
| 21 | | tr0 5247 |
. . . 4
⊢ Tr
∅ |
| 22 | | limsuc 7849 |
. . . . . . . 8
⊢ (Lim dom
𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc
𝑦 ∈ dom
𝑅1)) |
| 23 | 2, 22 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ dom
𝑅1 ↔ suc 𝑦 ∈ dom
𝑅1) |
| 24 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑦 ∈ On ∧ Tr
(𝑅1‘𝑦)) → Tr
(𝑅1‘𝑦)) |
| 25 | | pwtr 5432 |
. . . . . . . . 9
⊢ (Tr
(𝑅1‘𝑦) ↔ Tr 𝒫
(𝑅1‘𝑦)) |
| 26 | 24, 25 | sylib 218 |
. . . . . . . 8
⊢ ((𝑦 ∈ On ∧ Tr
(𝑅1‘𝑦)) → Tr 𝒫
(𝑅1‘𝑦)) |
| 27 | | r1sucg 9788 |
. . . . . . . . 9
⊢ (𝑦 ∈ dom
𝑅1 → (𝑅1‘suc 𝑦) = 𝒫
(𝑅1‘𝑦)) |
| 28 | | treq 5242 |
. . . . . . . . 9
⊢
((𝑅1‘suc 𝑦) = 𝒫
(𝑅1‘𝑦) → (Tr (𝑅1‘suc
𝑦) ↔ Tr 𝒫
(𝑅1‘𝑦))) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (𝑦 ∈ dom
𝑅1 → (Tr (𝑅1‘suc 𝑦) ↔ Tr 𝒫
(𝑅1‘𝑦))) |
| 30 | 26, 29 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((𝑦 ∈ On ∧ Tr
(𝑅1‘𝑦)) → (𝑦 ∈ dom 𝑅1 → Tr
(𝑅1‘suc 𝑦))) |
| 31 | 23, 30 | biimtrrid 243 |
. . . . . 6
⊢ ((𝑦 ∈ On ∧ Tr
(𝑅1‘𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → Tr
(𝑅1‘suc 𝑦))) |
| 32 | | ndmfv 6916 |
. . . . . . . 8
⊢ (¬
suc 𝑦 ∈ dom
𝑅1 → (𝑅1‘suc 𝑦) = ∅) |
| 33 | | treq 5242 |
. . . . . . . 8
⊢
((𝑅1‘suc 𝑦) = ∅ → (Tr
(𝑅1‘suc 𝑦) ↔ Tr ∅)) |
| 34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ (¬
suc 𝑦 ∈ dom
𝑅1 → (Tr (𝑅1‘suc 𝑦) ↔ Tr
∅)) |
| 35 | 21, 34 | mpbiri 258 |
. . . . . 6
⊢ (¬
suc 𝑦 ∈ dom
𝑅1 → Tr (𝑅1‘suc 𝑦)) |
| 36 | 31, 35 | pm2.61d1 180 |
. . . . 5
⊢ ((𝑦 ∈ On ∧ Tr
(𝑅1‘𝑦)) → Tr (𝑅1‘suc
𝑦)) |
| 37 | 36 | ex 412 |
. . . 4
⊢ (𝑦 ∈ On → (Tr
(𝑅1‘𝑦) → Tr (𝑅1‘suc
𝑦))) |
| 38 | | triun 5249 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 Tr
(𝑅1‘𝑦) → Tr ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
| 39 | | r1limg 9790 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ dom
𝑅1 ∧ Lim 𝑥) → (𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
| 40 | 39 | ancoms 458 |
. . . . . . . . 9
⊢ ((Lim
𝑥 ∧ 𝑥 ∈ dom 𝑅1) →
(𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
| 41 | | treq 5242 |
. . . . . . . . 9
⊢
((𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦) → (Tr
(𝑅1‘𝑥) ↔ Tr ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦))) |
| 42 | 40, 41 | syl 17 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ 𝑥 ∈ dom 𝑅1) → (Tr
(𝑅1‘𝑥) ↔ Tr ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦))) |
| 43 | 38, 42 | imbitrrid 246 |
. . . . . . 7
⊢ ((Lim
𝑥 ∧ 𝑥 ∈ dom 𝑅1) →
(∀𝑦 ∈ 𝑥 Tr
(𝑅1‘𝑦) → Tr
(𝑅1‘𝑥))) |
| 44 | 43 | impancom 451 |
. . . . . 6
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 Tr (𝑅1‘𝑦)) → (𝑥 ∈ dom 𝑅1 → Tr
(𝑅1‘𝑥))) |
| 45 | | ndmfv 6916 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ dom
𝑅1 → (𝑅1‘𝑥) = ∅) |
| 46 | 45, 10 | syl 17 |
. . . . . . 7
⊢ (¬
𝑥 ∈ dom
𝑅1 → (Tr (𝑅1‘𝑥) ↔ Tr
∅)) |
| 47 | 21, 46 | mpbiri 258 |
. . . . . 6
⊢ (¬
𝑥 ∈ dom
𝑅1 → Tr (𝑅1‘𝑥)) |
| 48 | 44, 47 | pm2.61d1 180 |
. . . . 5
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 Tr (𝑅1‘𝑦)) → Tr
(𝑅1‘𝑥)) |
| 49 | 48 | ex 412 |
. . . 4
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 Tr (𝑅1‘𝑦) → Tr
(𝑅1‘𝑥))) |
| 50 | 11, 14, 17, 20, 21, 37, 49 | tfinds 7860 |
. . 3
⊢ (𝐴 ∈ On → Tr
(𝑅1‘𝐴)) |
| 51 | 6, 50 | syl 17 |
. 2
⊢ (𝐴 ∈ dom
𝑅1 → Tr (𝑅1‘𝐴)) |
| 52 | | ndmfv 6916 |
. . . 4
⊢ (¬
𝐴 ∈ dom
𝑅1 → (𝑅1‘𝐴) = ∅) |
| 53 | | treq 5242 |
. . . 4
⊢
((𝑅1‘𝐴) = ∅ → (Tr
(𝑅1‘𝐴) ↔ Tr ∅)) |
| 54 | 52, 53 | syl 17 |
. . 3
⊢ (¬
𝐴 ∈ dom
𝑅1 → (Tr (𝑅1‘𝐴) ↔ Tr ∅)) |
| 55 | 21, 54 | mpbiri 258 |
. 2
⊢ (¬
𝐴 ∈ dom
𝑅1 → Tr (𝑅1‘𝐴)) |
| 56 | 51, 55 | pm2.61i 182 |
1
⊢ Tr
(𝑅1‘𝐴) |