MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tr Structured version   Visualization version   GIF version

Theorem r1tr 9788
Description: The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1tr Tr (𝑅1𝐴)

Proof of Theorem r1tr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9778 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 485 . . . . 5 Lim dom 𝑅1
3 limord 6413 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 7775 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
65sseli 3954 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
7 fveq2 6875 . . . . . 6 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
8 r10 9780 . . . . . 6 (𝑅1‘∅) = ∅
97, 8eqtrdi 2786 . . . . 5 (𝑥 = ∅ → (𝑅1𝑥) = ∅)
10 treq 5237 . . . . 5 ((𝑅1𝑥) = ∅ → (Tr (𝑅1𝑥) ↔ Tr ∅))
119, 10syl 17 . . . 4 (𝑥 = ∅ → (Tr (𝑅1𝑥) ↔ Tr ∅))
12 fveq2 6875 . . . . 5 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
13 treq 5237 . . . . 5 ((𝑅1𝑥) = (𝑅1𝑦) → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝑦)))
1412, 13syl 17 . . . 4 (𝑥 = 𝑦 → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝑦)))
15 fveq2 6875 . . . . 5 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
16 treq 5237 . . . . 5 ((𝑅1𝑥) = (𝑅1‘suc 𝑦) → (Tr (𝑅1𝑥) ↔ Tr (𝑅1‘suc 𝑦)))
1715, 16syl 17 . . . 4 (𝑥 = suc 𝑦 → (Tr (𝑅1𝑥) ↔ Tr (𝑅1‘suc 𝑦)))
18 fveq2 6875 . . . . 5 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
19 treq 5237 . . . . 5 ((𝑅1𝑥) = (𝑅1𝐴) → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝐴)))
2018, 19syl 17 . . . 4 (𝑥 = 𝐴 → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝐴)))
21 tr0 5242 . . . 4 Tr ∅
22 limsuc 7842 . . . . . . . 8 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
232, 22ax-mp 5 . . . . . . 7 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
24 simpr 484 . . . . . . . . 9 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → Tr (𝑅1𝑦))
25 pwtr 5427 . . . . . . . . 9 (Tr (𝑅1𝑦) ↔ Tr 𝒫 (𝑅1𝑦))
2624, 25sylib 218 . . . . . . . 8 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → Tr 𝒫 (𝑅1𝑦))
27 r1sucg 9781 . . . . . . . . 9 (𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
28 treq 5237 . . . . . . . . 9 ((𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦) → (Tr (𝑅1‘suc 𝑦) ↔ Tr 𝒫 (𝑅1𝑦)))
2927, 28syl 17 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → (Tr (𝑅1‘suc 𝑦) ↔ Tr 𝒫 (𝑅1𝑦)))
3026, 29syl5ibrcom 247 . . . . . . 7 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → (𝑦 ∈ dom 𝑅1 → Tr (𝑅1‘suc 𝑦)))
3123, 30biimtrrid 243 . . . . . 6 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → Tr (𝑅1‘suc 𝑦)))
32 ndmfv 6910 . . . . . . . 8 (¬ suc 𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = ∅)
33 treq 5237 . . . . . . . 8 ((𝑅1‘suc 𝑦) = ∅ → (Tr (𝑅1‘suc 𝑦) ↔ Tr ∅))
3432, 33syl 17 . . . . . . 7 (¬ suc 𝑦 ∈ dom 𝑅1 → (Tr (𝑅1‘suc 𝑦) ↔ Tr ∅))
3521, 34mpbiri 258 . . . . . 6 (¬ suc 𝑦 ∈ dom 𝑅1 → Tr (𝑅1‘suc 𝑦))
3631, 35pm2.61d1 180 . . . . 5 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → Tr (𝑅1‘suc 𝑦))
3736ex 412 . . . 4 (𝑦 ∈ On → (Tr (𝑅1𝑦) → Tr (𝑅1‘suc 𝑦)))
38 triun 5244 . . . . . . . 8 (∀𝑦𝑥 Tr (𝑅1𝑦) → Tr 𝑦𝑥 (𝑅1𝑦))
39 r1limg 9783 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4039ancoms 458 . . . . . . . . 9 ((Lim 𝑥𝑥 ∈ dom 𝑅1) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
41 treq 5237 . . . . . . . . 9 ((𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦) → (Tr (𝑅1𝑥) ↔ Tr 𝑦𝑥 (𝑅1𝑦)))
4240, 41syl 17 . . . . . . . 8 ((Lim 𝑥𝑥 ∈ dom 𝑅1) → (Tr (𝑅1𝑥) ↔ Tr 𝑦𝑥 (𝑅1𝑦)))
4338, 42imbitrrid 246 . . . . . . 7 ((Lim 𝑥𝑥 ∈ dom 𝑅1) → (∀𝑦𝑥 Tr (𝑅1𝑦) → Tr (𝑅1𝑥)))
4443impancom 451 . . . . . 6 ((Lim 𝑥 ∧ ∀𝑦𝑥 Tr (𝑅1𝑦)) → (𝑥 ∈ dom 𝑅1 → Tr (𝑅1𝑥)))
45 ndmfv 6910 . . . . . . . 8 𝑥 ∈ dom 𝑅1 → (𝑅1𝑥) = ∅)
4645, 10syl 17 . . . . . . 7 𝑥 ∈ dom 𝑅1 → (Tr (𝑅1𝑥) ↔ Tr ∅))
4721, 46mpbiri 258 . . . . . 6 𝑥 ∈ dom 𝑅1 → Tr (𝑅1𝑥))
4844, 47pm2.61d1 180 . . . . 5 ((Lim 𝑥 ∧ ∀𝑦𝑥 Tr (𝑅1𝑦)) → Tr (𝑅1𝑥))
4948ex 412 . . . 4 (Lim 𝑥 → (∀𝑦𝑥 Tr (𝑅1𝑦) → Tr (𝑅1𝑥)))
5011, 14, 17, 20, 21, 37, 49tfinds 7853 . . 3 (𝐴 ∈ On → Tr (𝑅1𝐴))
516, 50syl 17 . 2 (𝐴 ∈ dom 𝑅1 → Tr (𝑅1𝐴))
52 ndmfv 6910 . . . 4 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = ∅)
53 treq 5237 . . . 4 ((𝑅1𝐴) = ∅ → (Tr (𝑅1𝐴) ↔ Tr ∅))
5452, 53syl 17 . . 3 𝐴 ∈ dom 𝑅1 → (Tr (𝑅1𝐴) ↔ Tr ∅))
5521, 54mpbiri 258 . 2 𝐴 ∈ dom 𝑅1 → Tr (𝑅1𝐴))
5651, 55pm2.61i 182 1 Tr (𝑅1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  c0 4308  𝒫 cpw 4575   ciun 4967  Tr wtr 5229  dom cdm 5654  Ord word 6351  Oncon0 6352  Lim wlim 6353  suc csuc 6354  Fun wfun 6524  cfv 6530  𝑅1cr1 9774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-r1 9776
This theorem is referenced by:  r1tr2  9789  r1ordg  9790  r1ord3g  9791  r1ord2  9793  r1sssuc  9795  r1pwss  9796  r1val1  9798  rankwflemb  9805  r1elwf  9808  r1elssi  9817  uniwf  9831  tcrank  9896  ackbij2lem3  10252  r1limwun  10748  tskr1om2  10780  inagrud  44268
  Copyright terms: Public domain W3C validator