MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tr Structured version   Visualization version   GIF version

Theorem r1tr 9534
Description: The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1tr Tr (𝑅1𝐴)

Proof of Theorem r1tr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9524 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 486 . . . . 5 Lim dom 𝑅1
3 limord 6325 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 7633 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
65sseli 3917 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
7 fveq2 6774 . . . . . 6 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
8 r10 9526 . . . . . 6 (𝑅1‘∅) = ∅
97, 8eqtrdi 2794 . . . . 5 (𝑥 = ∅ → (𝑅1𝑥) = ∅)
10 treq 5197 . . . . 5 ((𝑅1𝑥) = ∅ → (Tr (𝑅1𝑥) ↔ Tr ∅))
119, 10syl 17 . . . 4 (𝑥 = ∅ → (Tr (𝑅1𝑥) ↔ Tr ∅))
12 fveq2 6774 . . . . 5 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
13 treq 5197 . . . . 5 ((𝑅1𝑥) = (𝑅1𝑦) → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝑦)))
1412, 13syl 17 . . . 4 (𝑥 = 𝑦 → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝑦)))
15 fveq2 6774 . . . . 5 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
16 treq 5197 . . . . 5 ((𝑅1𝑥) = (𝑅1‘suc 𝑦) → (Tr (𝑅1𝑥) ↔ Tr (𝑅1‘suc 𝑦)))
1715, 16syl 17 . . . 4 (𝑥 = suc 𝑦 → (Tr (𝑅1𝑥) ↔ Tr (𝑅1‘suc 𝑦)))
18 fveq2 6774 . . . . 5 (𝑥 = 𝐴 → (𝑅1𝑥) = (𝑅1𝐴))
19 treq 5197 . . . . 5 ((𝑅1𝑥) = (𝑅1𝐴) → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝐴)))
2018, 19syl 17 . . . 4 (𝑥 = 𝐴 → (Tr (𝑅1𝑥) ↔ Tr (𝑅1𝐴)))
21 tr0 5202 . . . 4 Tr ∅
22 limsuc 7696 . . . . . . . 8 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
232, 22ax-mp 5 . . . . . . 7 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
24 simpr 485 . . . . . . . . 9 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → Tr (𝑅1𝑦))
25 pwtr 5368 . . . . . . . . 9 (Tr (𝑅1𝑦) ↔ Tr 𝒫 (𝑅1𝑦))
2624, 25sylib 217 . . . . . . . 8 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → Tr 𝒫 (𝑅1𝑦))
27 r1sucg 9527 . . . . . . . . 9 (𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
28 treq 5197 . . . . . . . . 9 ((𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦) → (Tr (𝑅1‘suc 𝑦) ↔ Tr 𝒫 (𝑅1𝑦)))
2927, 28syl 17 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → (Tr (𝑅1‘suc 𝑦) ↔ Tr 𝒫 (𝑅1𝑦)))
3026, 29syl5ibrcom 246 . . . . . . 7 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → (𝑦 ∈ dom 𝑅1 → Tr (𝑅1‘suc 𝑦)))
3123, 30syl5bir 242 . . . . . 6 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → Tr (𝑅1‘suc 𝑦)))
32 ndmfv 6804 . . . . . . . 8 (¬ suc 𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = ∅)
33 treq 5197 . . . . . . . 8 ((𝑅1‘suc 𝑦) = ∅ → (Tr (𝑅1‘suc 𝑦) ↔ Tr ∅))
3432, 33syl 17 . . . . . . 7 (¬ suc 𝑦 ∈ dom 𝑅1 → (Tr (𝑅1‘suc 𝑦) ↔ Tr ∅))
3521, 34mpbiri 257 . . . . . 6 (¬ suc 𝑦 ∈ dom 𝑅1 → Tr (𝑅1‘suc 𝑦))
3631, 35pm2.61d1 180 . . . . 5 ((𝑦 ∈ On ∧ Tr (𝑅1𝑦)) → Tr (𝑅1‘suc 𝑦))
3736ex 413 . . . 4 (𝑦 ∈ On → (Tr (𝑅1𝑦) → Tr (𝑅1‘suc 𝑦)))
38 triun 5204 . . . . . . . 8 (∀𝑦𝑥 Tr (𝑅1𝑦) → Tr 𝑦𝑥 (𝑅1𝑦))
39 r1limg 9529 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
4039ancoms 459 . . . . . . . . 9 ((Lim 𝑥𝑥 ∈ dom 𝑅1) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
41 treq 5197 . . . . . . . . 9 ((𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦) → (Tr (𝑅1𝑥) ↔ Tr 𝑦𝑥 (𝑅1𝑦)))
4240, 41syl 17 . . . . . . . 8 ((Lim 𝑥𝑥 ∈ dom 𝑅1) → (Tr (𝑅1𝑥) ↔ Tr 𝑦𝑥 (𝑅1𝑦)))
4338, 42syl5ibr 245 . . . . . . 7 ((Lim 𝑥𝑥 ∈ dom 𝑅1) → (∀𝑦𝑥 Tr (𝑅1𝑦) → Tr (𝑅1𝑥)))
4443impancom 452 . . . . . 6 ((Lim 𝑥 ∧ ∀𝑦𝑥 Tr (𝑅1𝑦)) → (𝑥 ∈ dom 𝑅1 → Tr (𝑅1𝑥)))
45 ndmfv 6804 . . . . . . . 8 𝑥 ∈ dom 𝑅1 → (𝑅1𝑥) = ∅)
4645, 10syl 17 . . . . . . 7 𝑥 ∈ dom 𝑅1 → (Tr (𝑅1𝑥) ↔ Tr ∅))
4721, 46mpbiri 257 . . . . . 6 𝑥 ∈ dom 𝑅1 → Tr (𝑅1𝑥))
4844, 47pm2.61d1 180 . . . . 5 ((Lim 𝑥 ∧ ∀𝑦𝑥 Tr (𝑅1𝑦)) → Tr (𝑅1𝑥))
4948ex 413 . . . 4 (Lim 𝑥 → (∀𝑦𝑥 Tr (𝑅1𝑦) → Tr (𝑅1𝑥)))
5011, 14, 17, 20, 21, 37, 49tfinds 7706 . . 3 (𝐴 ∈ On → Tr (𝑅1𝐴))
516, 50syl 17 . 2 (𝐴 ∈ dom 𝑅1 → Tr (𝑅1𝐴))
52 ndmfv 6804 . . . 4 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = ∅)
53 treq 5197 . . . 4 ((𝑅1𝐴) = ∅ → (Tr (𝑅1𝐴) ↔ Tr ∅))
5452, 53syl 17 . . 3 𝐴 ∈ dom 𝑅1 → (Tr (𝑅1𝐴) ↔ Tr ∅))
5521, 54mpbiri 257 . 2 𝐴 ∈ dom 𝑅1 → Tr (𝑅1𝐴))
5651, 55pm2.61i 182 1 Tr (𝑅1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  c0 4256  𝒫 cpw 4533   ciun 4924  Tr wtr 5191  dom cdm 5589  Ord word 6265  Oncon0 6266  Lim wlim 6267  suc csuc 6268  Fun wfun 6427  cfv 6433  𝑅1cr1 9520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522
This theorem is referenced by:  r1tr2  9535  r1ordg  9536  r1ord3g  9537  r1ord2  9539  r1sssuc  9541  r1pwss  9542  r1val1  9544  rankwflemb  9551  r1elwf  9554  r1elssi  9563  uniwf  9577  tcrank  9642  ackbij2lem3  9997  r1limwun  10492  tskr1om2  10524  inagrud  41914
  Copyright terms: Public domain W3C validator