MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclun Structured version   Visualization version   GIF version

Theorem trclun 15033
Description: Transitive closure of a union of relations. (Contributed by RP, 5-May-2020.)
Assertion
Ref Expression
trclun ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆))))

Proof of Theorem trclun
Dummy variables 𝑥 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4165 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) ↔ (𝑅𝑆) ⊆ 𝑥)
2 simpl 482 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) → 𝑅𝑥)
31, 2sylbir 235 . . . . . . . . 9 ((𝑅𝑆) ⊆ 𝑥𝑅𝑥)
4 vex 3463 . . . . . . . . . . 11 𝑥 ∈ V
5 trcleq2lem 15010 . . . . . . . . . . 11 (𝑟 = 𝑥 → ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)))
64, 5elab 3658 . . . . . . . . . 10 (𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ↔ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
76biimpri 228 . . . . . . . . 9 ((𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
83, 7sylan 580 . . . . . . . 8 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
9 intss1 4939 . . . . . . . 8 (𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑥)
108, 9syl 17 . . . . . . 7 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑥)
11 simpr 484 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) → 𝑆𝑥)
121, 11sylbir 235 . . . . . . . . 9 ((𝑅𝑆) ⊆ 𝑥𝑆𝑥)
13 trcleq2lem 15010 . . . . . . . . . . 11 (𝑠 = 𝑥 → ((𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)))
144, 13elab 3658 . . . . . . . . . 10 (𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ↔ (𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
1514biimpri 228 . . . . . . . . 9 ((𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
1612, 15sylan 580 . . . . . . . 8 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
17 intss1 4939 . . . . . . . 8 (𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} → {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ 𝑥)
1816, 17syl 17 . . . . . . 7 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ 𝑥)
1910, 18unssd 4167 . . . . . 6 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥)
20 simpr 484 . . . . . 6 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → (𝑥𝑥) ⊆ 𝑥)
2119, 20jca 511 . . . . 5 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
22 ssmin 4943 . . . . . . . 8 𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
23 ssmin 4943 . . . . . . . 8 𝑆 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
24 unss12 4163 . . . . . . . 8 ((𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∧ 𝑆 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) → (𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}))
2522, 23, 24mp2an 692 . . . . . . 7 (𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
26 sstr 3967 . . . . . . 7 (((𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∧ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥) → (𝑅𝑆) ⊆ 𝑥)
2725, 26mpan 690 . . . . . 6 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 → (𝑅𝑆) ⊆ 𝑥)
2827anim1i 615 . . . . 5 ((( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
2921, 28impbii 209 . . . 4 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
3029abbii 2802 . . 3 {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}
3130inteqi 4926 . 2 {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}
32 unexg 7737 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅𝑆) ∈ V)
33 trclfv 15019 . . 3 ((𝑅𝑆) ∈ V → (t+‘(𝑅𝑆)) = {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
3432, 33syl 17 . 2 ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
35 simpl 482 . . . . . 6 ((𝑅𝑉𝑆𝑊) → 𝑅𝑉)
36 trclfv 15019 . . . . . 6 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
3735, 36syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊) → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
38 simpr 484 . . . . . 6 ((𝑅𝑉𝑆𝑊) → 𝑆𝑊)
39 trclfv 15019 . . . . . 6 (𝑆𝑊 → (t+‘𝑆) = {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
4038, 39syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊) → (t+‘𝑆) = {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
4137, 40uneq12d 4144 . . . 4 ((𝑅𝑉𝑆𝑊) → ((t+‘𝑅) ∪ (t+‘𝑆)) = ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}))
4241fveq2d 6880 . . 3 ((𝑅𝑉𝑆𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})))
43 fvex 6889 . . . . . 6 (t+‘𝑅) ∈ V
4436, 43eqeltrrdi 2843 . . . . 5 (𝑅𝑉 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∈ V)
45 fvex 6889 . . . . . 6 (t+‘𝑆) ∈ V
4639, 45eqeltrrdi 2843 . . . . 5 (𝑆𝑊 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ∈ V)
47 unexg 7737 . . . . 5 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∈ V ∧ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ∈ V) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V)
4844, 46, 47syl2an 596 . . . 4 ((𝑅𝑉𝑆𝑊) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V)
49 trclfv 15019 . . . 4 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V → (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5048, 49syl 17 . . 3 ((𝑅𝑉𝑆𝑊) → (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5142, 50eqtrd 2770 . 2 ((𝑅𝑉𝑆𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5231, 34, 513eqtr4a 2796 1 ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  Vcvv 3459  cun 3924  wss 3926   cint 4922  ccom 5658  cfv 6531  t+ctcl 15004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fv 6539  df-trcl 15006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator