MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclun Structured version   Visualization version   GIF version

Theorem trclun 14368
Description: Transitive closure of a union of relations. (Contributed by RP, 5-May-2020.)
Assertion
Ref Expression
trclun ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆))))

Proof of Theorem trclun
Dummy variables 𝑥 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4159 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) ↔ (𝑅𝑆) ⊆ 𝑥)
2 simpl 485 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) → 𝑅𝑥)
31, 2sylbir 237 . . . . . . . . 9 ((𝑅𝑆) ⊆ 𝑥𝑅𝑥)
4 vex 3497 . . . . . . . . . . 11 𝑥 ∈ V
5 trcleq2lem 14345 . . . . . . . . . . 11 (𝑟 = 𝑥 → ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)))
64, 5elab 3666 . . . . . . . . . 10 (𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ↔ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
76biimpri 230 . . . . . . . . 9 ((𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
83, 7sylan 582 . . . . . . . 8 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
9 intss1 4883 . . . . . . . 8 (𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑥)
108, 9syl 17 . . . . . . 7 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑥)
11 simpr 487 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) → 𝑆𝑥)
121, 11sylbir 237 . . . . . . . . 9 ((𝑅𝑆) ⊆ 𝑥𝑆𝑥)
13 trcleq2lem 14345 . . . . . . . . . . 11 (𝑠 = 𝑥 → ((𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)))
144, 13elab 3666 . . . . . . . . . 10 (𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ↔ (𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
1514biimpri 230 . . . . . . . . 9 ((𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
1612, 15sylan 582 . . . . . . . 8 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
17 intss1 4883 . . . . . . . 8 (𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} → {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ 𝑥)
1816, 17syl 17 . . . . . . 7 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ 𝑥)
1910, 18unssd 4161 . . . . . 6 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥)
20 simpr 487 . . . . . 6 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → (𝑥𝑥) ⊆ 𝑥)
2119, 20jca 514 . . . . 5 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
22 ssmin 4887 . . . . . . . 8 𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
23 ssmin 4887 . . . . . . . 8 𝑆 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
24 unss12 4157 . . . . . . . 8 ((𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∧ 𝑆 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) → (𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}))
2522, 23, 24mp2an 690 . . . . . . 7 (𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
26 sstr 3974 . . . . . . 7 (((𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∧ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥) → (𝑅𝑆) ⊆ 𝑥)
2725, 26mpan 688 . . . . . 6 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 → (𝑅𝑆) ⊆ 𝑥)
2827anim1i 616 . . . . 5 ((( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
2921, 28impbii 211 . . . 4 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
3029abbii 2886 . . 3 {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}
3130inteqi 4872 . 2 {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}
32 unexg 7466 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅𝑆) ∈ V)
33 trclfv 14354 . . 3 ((𝑅𝑆) ∈ V → (t+‘(𝑅𝑆)) = {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
3432, 33syl 17 . 2 ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
35 simpl 485 . . . . . 6 ((𝑅𝑉𝑆𝑊) → 𝑅𝑉)
36 trclfv 14354 . . . . . 6 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
3735, 36syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊) → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
38 simpr 487 . . . . . 6 ((𝑅𝑉𝑆𝑊) → 𝑆𝑊)
39 trclfv 14354 . . . . . 6 (𝑆𝑊 → (t+‘𝑆) = {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
4038, 39syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊) → (t+‘𝑆) = {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
4137, 40uneq12d 4139 . . . 4 ((𝑅𝑉𝑆𝑊) → ((t+‘𝑅) ∪ (t+‘𝑆)) = ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}))
4241fveq2d 6668 . . 3 ((𝑅𝑉𝑆𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})))
43 fvex 6677 . . . . . 6 (t+‘𝑅) ∈ V
4436, 43eqeltrrdi 2922 . . . . 5 (𝑅𝑉 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∈ V)
45 fvex 6677 . . . . . 6 (t+‘𝑆) ∈ V
4639, 45eqeltrrdi 2922 . . . . 5 (𝑆𝑊 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ∈ V)
47 unexg 7466 . . . . 5 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∈ V ∧ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ∈ V) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V)
4844, 46, 47syl2an 597 . . . 4 ((𝑅𝑉𝑆𝑊) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V)
49 trclfv 14354 . . . 4 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V → (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5048, 49syl 17 . . 3 ((𝑅𝑉𝑆𝑊) → (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5142, 50eqtrd 2856 . 2 ((𝑅𝑉𝑆𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5231, 34, 513eqtr4a 2882 1 ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {cab 2799  Vcvv 3494  cun 3933  wss 3935   cint 4868  ccom 5553  cfv 6349  t+ctcl 14339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-iota 6308  df-fun 6351  df-fv 6357  df-trcl 14341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator