MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclun Structured version   Visualization version   GIF version

Theorem trclun 14980
Description: Transitive closure of a union of relations. (Contributed by RP, 5-May-2020.)
Assertion
Ref Expression
trclun ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆))))

Proof of Theorem trclun
Dummy variables 𝑥 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 4153 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) ↔ (𝑅𝑆) ⊆ 𝑥)
2 simpl 482 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) → 𝑅𝑥)
31, 2sylbir 235 . . . . . . . . 9 ((𝑅𝑆) ⊆ 𝑥𝑅𝑥)
4 vex 3451 . . . . . . . . . . 11 𝑥 ∈ V
5 trcleq2lem 14957 . . . . . . . . . . 11 (𝑟 = 𝑥 → ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)))
64, 5elab 3646 . . . . . . . . . 10 (𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ↔ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
76biimpri 228 . . . . . . . . 9 ((𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
83, 7sylan 580 . . . . . . . 8 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
9 intss1 4927 . . . . . . . 8 (𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑥)
108, 9syl 17 . . . . . . 7 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑥)
11 simpr 484 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) → 𝑆𝑥)
121, 11sylbir 235 . . . . . . . . 9 ((𝑅𝑆) ⊆ 𝑥𝑆𝑥)
13 trcleq2lem 14957 . . . . . . . . . . 11 (𝑠 = 𝑥 → ((𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)))
144, 13elab 3646 . . . . . . . . . 10 (𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ↔ (𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
1514biimpri 228 . . . . . . . . 9 ((𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
1612, 15sylan 580 . . . . . . . 8 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
17 intss1 4927 . . . . . . . 8 (𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} → {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ 𝑥)
1816, 17syl 17 . . . . . . 7 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ 𝑥)
1910, 18unssd 4155 . . . . . 6 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥)
20 simpr 484 . . . . . 6 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → (𝑥𝑥) ⊆ 𝑥)
2119, 20jca 511 . . . . 5 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
22 ssmin 4931 . . . . . . . 8 𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
23 ssmin 4931 . . . . . . . 8 𝑆 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
24 unss12 4151 . . . . . . . 8 ((𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∧ 𝑆 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) → (𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}))
2522, 23, 24mp2an 692 . . . . . . 7 (𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
26 sstr 3955 . . . . . . 7 (((𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∧ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥) → (𝑅𝑆) ⊆ 𝑥)
2725, 26mpan 690 . . . . . 6 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 → (𝑅𝑆) ⊆ 𝑥)
2827anim1i 615 . . . . 5 ((( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
2921, 28impbii 209 . . . 4 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
3029abbii 2796 . . 3 {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}
3130inteqi 4914 . 2 {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}
32 unexg 7719 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅𝑆) ∈ V)
33 trclfv 14966 . . 3 ((𝑅𝑆) ∈ V → (t+‘(𝑅𝑆)) = {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
3432, 33syl 17 . 2 ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
35 simpl 482 . . . . . 6 ((𝑅𝑉𝑆𝑊) → 𝑅𝑉)
36 trclfv 14966 . . . . . 6 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
3735, 36syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊) → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
38 simpr 484 . . . . . 6 ((𝑅𝑉𝑆𝑊) → 𝑆𝑊)
39 trclfv 14966 . . . . . 6 (𝑆𝑊 → (t+‘𝑆) = {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
4038, 39syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊) → (t+‘𝑆) = {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
4137, 40uneq12d 4132 . . . 4 ((𝑅𝑉𝑆𝑊) → ((t+‘𝑅) ∪ (t+‘𝑆)) = ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}))
4241fveq2d 6862 . . 3 ((𝑅𝑉𝑆𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})))
43 fvex 6871 . . . . . 6 (t+‘𝑅) ∈ V
4436, 43eqeltrrdi 2837 . . . . 5 (𝑅𝑉 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∈ V)
45 fvex 6871 . . . . . 6 (t+‘𝑆) ∈ V
4639, 45eqeltrrdi 2837 . . . . 5 (𝑆𝑊 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ∈ V)
47 unexg 7719 . . . . 5 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∈ V ∧ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ∈ V) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V)
4844, 46, 47syl2an 596 . . . 4 ((𝑅𝑉𝑆𝑊) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V)
49 trclfv 14966 . . . 4 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V → (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5048, 49syl 17 . . 3 ((𝑅𝑉𝑆𝑊) → (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5142, 50eqtrd 2764 . 2 ((𝑅𝑉𝑆𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5231, 34, 513eqtr4a 2790 1 ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  cun 3912  wss 3914   cint 4910  ccom 5642  cfv 6511  t+ctcl 14951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-trcl 14953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator