| Step | Hyp | Ref
| Expression |
| 1 | | unss 4190 |
. . . . . . . . . 10
⊢ ((𝑅 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥) ↔ (𝑅 ∪ 𝑆) ⊆ 𝑥) |
| 2 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑅 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥) → 𝑅 ⊆ 𝑥) |
| 3 | 1, 2 | sylbir 235 |
. . . . . . . . 9
⊢ ((𝑅 ∪ 𝑆) ⊆ 𝑥 → 𝑅 ⊆ 𝑥) |
| 4 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 5 | | trcleq2lem 15030 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑥 → ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥))) |
| 6 | 4, 5 | elab 3679 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ↔ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
| 7 | 6 | biimpri 228 |
. . . . . . . . 9
⊢ ((𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
| 8 | 3, 7 | sylan 580 |
. . . . . . . 8
⊢ (((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
| 9 | | intss1 4963 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ 𝑥) |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ 𝑥) |
| 11 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑅 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥) → 𝑆 ⊆ 𝑥) |
| 12 | 1, 11 | sylbir 235 |
. . . . . . . . 9
⊢ ((𝑅 ∪ 𝑆) ⊆ 𝑥 → 𝑆 ⊆ 𝑥) |
| 13 | | trcleq2lem 15030 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑥 → ((𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) ↔ (𝑆 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥))) |
| 14 | 4, 13 | elab 3679 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ↔ (𝑆 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
| 15 | 14 | biimpri 228 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) |
| 16 | 12, 15 | sylan 580 |
. . . . . . . 8
⊢ (((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) |
| 17 | | intss1 4963 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} → ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ 𝑥) |
| 18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ⊆ 𝑥) |
| 19 | 10, 18 | unssd 4192 |
. . . . . 6
⊢ (((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → (∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥) |
| 20 | | simpr 484 |
. . . . . 6
⊢ (((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → (𝑥 ∘ 𝑥) ⊆ 𝑥) |
| 21 | 19, 20 | jca 511 |
. . . . 5
⊢ (((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → ((∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
| 22 | | ssmin 4967 |
. . . . . . . 8
⊢ 𝑅 ⊆ ∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} |
| 23 | | ssmin 4967 |
. . . . . . . 8
⊢ 𝑆 ⊆ ∩ {𝑠
∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} |
| 24 | | unss12 4188 |
. . . . . . . 8
⊢ ((𝑅 ⊆ ∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∧ 𝑆 ⊆ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) → (𝑅 ∪ 𝑆) ⊆ (∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)})) |
| 25 | 22, 23, 24 | mp2an 692 |
. . . . . . 7
⊢ (𝑅 ∪ 𝑆) ⊆ (∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) |
| 26 | | sstr 3992 |
. . . . . . 7
⊢ (((𝑅 ∪ 𝑆) ⊆ (∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ∧ (∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥) → (𝑅 ∪ 𝑆) ⊆ 𝑥) |
| 27 | 25, 26 | mpan 690 |
. . . . . 6
⊢ ((∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥 → (𝑅 ∪ 𝑆) ⊆ 𝑥) |
| 28 | 27 | anim1i 615 |
. . . . 5
⊢ (((∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) → ((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
| 29 | 21, 28 | impbii 209 |
. . . 4
⊢ (((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) ↔ ((∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
| 30 | 29 | abbii 2809 |
. . 3
⊢ {𝑥 ∣ ((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = {𝑥 ∣ ((∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} |
| 31 | 30 | inteqi 4950 |
. 2
⊢ ∩ {𝑥
∣ ((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑥 ∣ ((∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} |
| 32 | | unexg 7763 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ∪ 𝑆) ∈ V) |
| 33 | | trclfv 15039 |
. . 3
⊢ ((𝑅 ∪ 𝑆) ∈ V → (t+‘(𝑅 ∪ 𝑆)) = ∩ {𝑥 ∣ ((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| 34 | 32, 33 | syl 17 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (t+‘(𝑅 ∪ 𝑆)) = ∩ {𝑥 ∣ ((𝑅 ∪ 𝑆) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| 35 | | simpl 482 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑅 ∈ 𝑉) |
| 36 | | trclfv 15039 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
| 37 | 35, 36 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
| 38 | | simpr 484 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝑆 ∈ 𝑊) |
| 39 | | trclfv 15039 |
. . . . . 6
⊢ (𝑆 ∈ 𝑊 → (t+‘𝑆) = ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) |
| 40 | 38, 39 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (t+‘𝑆) = ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) |
| 41 | 37, 40 | uneq12d 4169 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((t+‘𝑅) ∪ (t+‘𝑆)) = (∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)})) |
| 42 | 41 | fveq2d 6910 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = (t+‘(∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}))) |
| 43 | | fvex 6919 |
. . . . . 6
⊢
(t+‘𝑅) ∈
V |
| 44 | 36, 43 | eqeltrrdi 2850 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∈ V) |
| 45 | | fvex 6919 |
. . . . . 6
⊢
(t+‘𝑆) ∈
V |
| 46 | 39, 45 | eqeltrrdi 2850 |
. . . . 5
⊢ (𝑆 ∈ 𝑊 → ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ∈ V) |
| 47 | | unexg 7763 |
. . . . 5
⊢ ((∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∈ V ∧ ∩ {𝑠
∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)} ∈ V) → (∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ∈ V) |
| 48 | 44, 46, 47 | syl2an 596 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ∈ V) |
| 49 | | trclfv 15039 |
. . . 4
⊢ ((∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ∈ V → (t+‘(∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)})) = ∩ {𝑥 ∣ ((∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| 50 | 48, 49 | syl 17 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (t+‘(∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)})) = ∩ {𝑥 ∣ ((∩ {𝑟
∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| 51 | 42, 50 | eqtrd 2777 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = ∩ {𝑥
∣ ((∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ∪ ∩ {𝑠 ∣ (𝑆 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)}) |
| 52 | 31, 34, 51 | 3eqtr4a 2803 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (t+‘(𝑅 ∪ 𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆)))) |