Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrcl3 Structured version   Visualization version   GIF version

Theorem dftrcl3 42960
Description: Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dftrcl3 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dftrcl3
Dummy variables 𝑘 𝑎 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trcl 14931 . 2 t+ = (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 relexp1g 14970 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) = 𝑟)
3 nnex 12215 . . . . . . . . 9 ℕ ∈ V
4 1nn 12220 . . . . . . . . 9 1 ∈ ℕ
5 oveq1 7408 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → (𝑎𝑟𝑛) = (𝑡𝑟𝑛))
65iuneq2d 5016 . . . . . . . . . . . 12 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑡𝑟𝑛))
7 oveq2 7409 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑡𝑟𝑛) = (𝑡𝑟𝑘))
87cbviunv 5033 . . . . . . . . . . . 12 𝑛 ∈ ℕ (𝑡𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘)
96, 8eqtrdi 2780 . . . . . . . . . . 11 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘))
109cbvmptv 5251 . . . . . . . . . 10 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑡 ∈ V ↦ 𝑘 ∈ ℕ (𝑡𝑟𝑘))
1110ov2ssiunov2 42940 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ ∈ V ∧ 1 ∈ ℕ) → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
123, 4, 11mp3an23 1449 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
132, 12eqsstrrd 4013 . . . . . . 7 (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
14 nnuz 12862 . . . . . . . 8 ℕ = (ℤ‘1)
15 1nn0 12485 . . . . . . . 8 1 ∈ ℕ0
1610iunrelexpuztr 42959 . . . . . . . 8 ((𝑟 ∈ V ∧ ℕ = (ℤ‘1) ∧ 1 ∈ ℕ0) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
1714, 15, 16mp3an23 1449 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
18 fvex 6894 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V
19 trcleq2lem 14935 . . . . . . . . . 10 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2019a1i 11 . . . . . . . . 9 (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
2120alrimiv 1922 . . . . . . . 8 (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
22 elabgt 3654 . . . . . . . 8 ((((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2318, 21, 22sylancr 586 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2413, 17, 23mpbir2and 710 . . . . . 6 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
25 intss1 4957 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
2624, 25syl 17 . . . . 5 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
27 vex 3470 . . . . . . . . 9 𝑠 ∈ V
28 trcleq2lem 14935 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
2927, 28elab 3660 . . . . . . . 8 (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
30 eqid 2724 . . . . . . . . . 10 ℕ = ℕ
3110iunrelexpmin1 42948 . . . . . . . . . 10 ((𝑟 ∈ V ∧ ℕ = ℕ) → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3230, 31mpan2 688 . . . . . . . . 9 (𝑟 ∈ V → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
333219.21bi 2174 . . . . . . . 8 (𝑟 ∈ V → ((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3429, 33biimtrid 241 . . . . . . 7 (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3534ralrimiv 3137 . . . . . 6 (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
36 ssint 4958 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
3735, 36sylibr 233 . . . . 5 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
3826, 37eqssd 3991 . . . 4 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
39 oveq1 7408 . . . . . 6 (𝑎 = 𝑟 → (𝑎𝑟𝑛) = (𝑟𝑟𝑛))
4039iuneq2d 5016 . . . . 5 (𝑎 = 𝑟 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
41 eqid 2724 . . . . 5 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))
42 ovex 7434 . . . . . 6 (𝑟𝑟𝑛) ∈ V
433, 42iunex 7948 . . . . 5 𝑛 ∈ ℕ (𝑟𝑟𝑛) ∈ V
4440, 41, 43fvmpt 6988 . . . 4 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4538, 44eqtrd 2764 . . 3 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4645mpteq2ia 5241 . 2 (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
471, 46eqtri 2752 1 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  {cab 2701  wral 3053  Vcvv 3466  wss 3940   cint 4940   ciun 4987  cmpt 5221  ccom 5670  cfv 6533  (class class class)co 7401  1c1 11107  cn 12209  0cn0 12469  cuz 12819  t+ctcl 14929  𝑟crelexp 14963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-seq 13964  df-trcl 14931  df-relexp 14964
This theorem is referenced by:  brfvtrcld  42961  fvtrcllb1d  42962  trclfvcom  42963  cnvtrclfv  42964  cotrcltrcl  42965  trclimalb2  42966  trclfvdecomr  42968  dfrtrcl4  42978  corcltrcl  42979  cotrclrcl  42982
  Copyright terms: Public domain W3C validator