Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrcl3 Structured version   Visualization version   GIF version

Theorem dftrcl3 40071
Description: Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dftrcl3 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dftrcl3
Dummy variables 𝑘 𝑎 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trcl 14350 . 2 t+ = (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 relexp1g 14388 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) = 𝑟)
3 nnex 11647 . . . . . . . . 9 ℕ ∈ V
4 1nn 11652 . . . . . . . . 9 1 ∈ ℕ
5 oveq1 7166 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → (𝑎𝑟𝑛) = (𝑡𝑟𝑛))
65iuneq2d 4951 . . . . . . . . . . . 12 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑡𝑟𝑛))
7 oveq2 7167 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑡𝑟𝑛) = (𝑡𝑟𝑘))
87cbviunv 4968 . . . . . . . . . . . 12 𝑛 ∈ ℕ (𝑡𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘)
96, 8syl6eq 2875 . . . . . . . . . . 11 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘))
109cbvmptv 5172 . . . . . . . . . 10 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑡 ∈ V ↦ 𝑘 ∈ ℕ (𝑡𝑟𝑘))
1110ov2ssiunov2 40051 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ ∈ V ∧ 1 ∈ ℕ) → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
123, 4, 11mp3an23 1449 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
132, 12eqsstrrd 4009 . . . . . . 7 (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
14 nnuz 12284 . . . . . . . 8 ℕ = (ℤ‘1)
15 1nn0 11916 . . . . . . . 8 1 ∈ ℕ0
1610iunrelexpuztr 40070 . . . . . . . 8 ((𝑟 ∈ V ∧ ℕ = (ℤ‘1) ∧ 1 ∈ ℕ0) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
1714, 15, 16mp3an23 1449 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
18 fvex 6686 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V
19 trcleq2lem 14354 . . . . . . . . . 10 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2019a1i 11 . . . . . . . . 9 (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
2120alrimiv 1927 . . . . . . . 8 (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
22 elabgt 3666 . . . . . . . 8 ((((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2318, 21, 22sylancr 589 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2413, 17, 23mpbir2and 711 . . . . . 6 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
25 intss1 4894 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
2624, 25syl 17 . . . . 5 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
27 vex 3500 . . . . . . . . 9 𝑠 ∈ V
28 trcleq2lem 14354 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
2927, 28elab 3670 . . . . . . . 8 (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
30 eqid 2824 . . . . . . . . . 10 ℕ = ℕ
3110iunrelexpmin1 40059 . . . . . . . . . 10 ((𝑟 ∈ V ∧ ℕ = ℕ) → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3230, 31mpan2 689 . . . . . . . . 9 (𝑟 ∈ V → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
333219.21bi 2187 . . . . . . . 8 (𝑟 ∈ V → ((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3429, 33syl5bi 244 . . . . . . 7 (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3534ralrimiv 3184 . . . . . 6 (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
36 ssint 4895 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
3735, 36sylibr 236 . . . . 5 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
3826, 37eqssd 3987 . . . 4 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
39 oveq1 7166 . . . . . 6 (𝑎 = 𝑟 → (𝑎𝑟𝑛) = (𝑟𝑟𝑛))
4039iuneq2d 4951 . . . . 5 (𝑎 = 𝑟 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
41 eqid 2824 . . . . 5 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))
42 ovex 7192 . . . . . 6 (𝑟𝑟𝑛) ∈ V
433, 42iunex 7672 . . . . 5 𝑛 ∈ ℕ (𝑟𝑟𝑛) ∈ V
4440, 41, 43fvmpt 6771 . . . 4 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4538, 44eqtrd 2859 . . 3 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4645mpteq2ia 5160 . 2 (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
471, 46eqtri 2847 1 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1534   = wceq 1536  wcel 2113  {cab 2802  wral 3141  Vcvv 3497  wss 3939   cint 4879   ciun 4922  cmpt 5149  ccom 5562  cfv 6358  (class class class)co 7159  1c1 10541  cn 11641  0cn0 11900  cuz 12246  t+ctcl 14348  𝑟crelexp 14382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-trcl 14350  df-relexp 14383
This theorem is referenced by:  brfvtrcld  40072  fvtrcllb1d  40073  trclfvcom  40074  cnvtrclfv  40075  cotrcltrcl  40076  trclimalb2  40077  trclfvdecomr  40079  dfrtrcl4  40089  corcltrcl  40090  cotrclrcl  40093
  Copyright terms: Public domain W3C validator