Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrcl3 Structured version   Visualization version   GIF version

Theorem dftrcl3 43753
Description: Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dftrcl3 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dftrcl3
Dummy variables 𝑘 𝑎 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trcl 14889 . 2 t+ = (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 relexp1g 14928 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) = 𝑟)
3 nnex 12126 . . . . . . . . 9 ℕ ∈ V
4 1nn 12131 . . . . . . . . 9 1 ∈ ℕ
5 oveq1 7348 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → (𝑎𝑟𝑛) = (𝑡𝑟𝑛))
65iuneq2d 4967 . . . . . . . . . . . 12 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑡𝑟𝑛))
7 oveq2 7349 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑡𝑟𝑛) = (𝑡𝑟𝑘))
87cbviunv 4984 . . . . . . . . . . . 12 𝑛 ∈ ℕ (𝑡𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘)
96, 8eqtrdi 2782 . . . . . . . . . . 11 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘))
109cbvmptv 5190 . . . . . . . . . 10 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑡 ∈ V ↦ 𝑘 ∈ ℕ (𝑡𝑟𝑘))
1110ov2ssiunov2 43733 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ ∈ V ∧ 1 ∈ ℕ) → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
123, 4, 11mp3an23 1455 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
132, 12eqsstrrd 3965 . . . . . . 7 (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
14 nnuz 12770 . . . . . . . 8 ℕ = (ℤ‘1)
15 1nn0 12392 . . . . . . . 8 1 ∈ ℕ0
1610iunrelexpuztr 43752 . . . . . . . 8 ((𝑟 ∈ V ∧ ℕ = (ℤ‘1) ∧ 1 ∈ ℕ0) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
1714, 15, 16mp3an23 1455 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
18 fvex 6830 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V
19 trcleq2lem 14893 . . . . . . . . . 10 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2019a1i 11 . . . . . . . . 9 (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
2120alrimiv 1928 . . . . . . . 8 (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
22 elabgt 3622 . . . . . . . 8 ((((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2318, 21, 22sylancr 587 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2413, 17, 23mpbir2and 713 . . . . . 6 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
25 intss1 4908 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
2624, 25syl 17 . . . . 5 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
27 vex 3440 . . . . . . . . 9 𝑠 ∈ V
28 trcleq2lem 14893 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
2927, 28elab 3630 . . . . . . . 8 (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
30 eqid 2731 . . . . . . . . . 10 ℕ = ℕ
3110iunrelexpmin1 43741 . . . . . . . . . 10 ((𝑟 ∈ V ∧ ℕ = ℕ) → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3230, 31mpan2 691 . . . . . . . . 9 (𝑟 ∈ V → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
333219.21bi 2192 . . . . . . . 8 (𝑟 ∈ V → ((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3429, 33biimtrid 242 . . . . . . 7 (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3534ralrimiv 3123 . . . . . 6 (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
36 ssint 4909 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
3735, 36sylibr 234 . . . . 5 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
3826, 37eqssd 3947 . . . 4 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
39 oveq1 7348 . . . . . 6 (𝑎 = 𝑟 → (𝑎𝑟𝑛) = (𝑟𝑟𝑛))
4039iuneq2d 4967 . . . . 5 (𝑎 = 𝑟 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
41 eqid 2731 . . . . 5 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))
42 ovex 7374 . . . . . 6 (𝑟𝑟𝑛) ∈ V
433, 42iunex 7895 . . . . 5 𝑛 ∈ ℕ (𝑟𝑟𝑛) ∈ V
4440, 41, 43fvmpt 6924 . . . 4 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4538, 44eqtrd 2766 . . 3 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4645mpteq2ia 5181 . 2 (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
471, 46eqtri 2754 1 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047  Vcvv 3436  wss 3897   cint 4892   ciun 4936  cmpt 5167  ccom 5615  cfv 6476  (class class class)co 7341  1c1 11002  cn 12120  0cn0 12376  cuz 12727  t+ctcl 14887  𝑟crelexp 14921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-seq 13904  df-trcl 14889  df-relexp 14922
This theorem is referenced by:  brfvtrcld  43754  fvtrcllb1d  43755  trclfvcom  43756  cnvtrclfv  43757  cotrcltrcl  43758  trclimalb2  43759  trclfvdecomr  43761  dfrtrcl4  43771  corcltrcl  43772  cotrclrcl  43775
  Copyright terms: Public domain W3C validator