Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrcl3 Structured version   Visualization version   GIF version

Theorem dftrcl3 41217
Description: Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dftrcl3 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Distinct variable group:   𝑛,𝑟

Proof of Theorem dftrcl3
Dummy variables 𝑘 𝑎 𝑡 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trcl 14626 . 2 t+ = (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
2 relexp1g 14665 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) = 𝑟)
3 nnex 11909 . . . . . . . . 9 ℕ ∈ V
4 1nn 11914 . . . . . . . . 9 1 ∈ ℕ
5 oveq1 7262 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → (𝑎𝑟𝑛) = (𝑡𝑟𝑛))
65iuneq2d 4950 . . . . . . . . . . . 12 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑡𝑟𝑛))
7 oveq2 7263 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑡𝑟𝑛) = (𝑡𝑟𝑘))
87cbviunv 4966 . . . . . . . . . . . 12 𝑛 ∈ ℕ (𝑡𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘)
96, 8eqtrdi 2795 . . . . . . . . . . 11 (𝑎 = 𝑡 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑘 ∈ ℕ (𝑡𝑟𝑘))
109cbvmptv 5183 . . . . . . . . . 10 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑡 ∈ V ↦ 𝑘 ∈ ℕ (𝑡𝑟𝑘))
1110ov2ssiunov2 41197 . . . . . . . . 9 ((𝑟 ∈ V ∧ ℕ ∈ V ∧ 1 ∈ ℕ) → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
123, 4, 11mp3an23 1451 . . . . . . . 8 (𝑟 ∈ V → (𝑟𝑟1) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
132, 12eqsstrrd 3956 . . . . . . 7 (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
14 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
15 1nn0 12179 . . . . . . . 8 1 ∈ ℕ0
1610iunrelexpuztr 41216 . . . . . . . 8 ((𝑟 ∈ V ∧ ℕ = (ℤ‘1) ∧ 1 ∈ ℕ0) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
1714, 15, 16mp3an23 1451 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
18 fvex 6769 . . . . . . . 8 ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V
19 trcleq2lem 14630 . . . . . . . . . 10 (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2019a1i 11 . . . . . . . . 9 (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
2120alrimiv 1931 . . . . . . . 8 (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)))))
22 elabgt 3596 . . . . . . . 8 ((((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2318, 21, 22sylancr 586 . . . . . . 7 (𝑟 ∈ V → (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))))
2413, 17, 23mpbir2and 709 . . . . . 6 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
25 intss1 4891 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
2624, 25syl 17 . . . . 5 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
27 vex 3426 . . . . . . . . 9 𝑠 ∈ V
28 trcleq2lem 14630 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
2927, 28elab 3602 . . . . . . . 8 (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ (𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠))
30 eqid 2738 . . . . . . . . . 10 ℕ = ℕ
3110iunrelexpmin1 41205 . . . . . . . . . 10 ((𝑟 ∈ V ∧ ℕ = ℕ) → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3230, 31mpan2 687 . . . . . . . . 9 (𝑟 ∈ V → ∀𝑠((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
333219.21bi 2184 . . . . . . . 8 (𝑟 ∈ V → ((𝑟𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3429, 33syl5bi 241 . . . . . . 7 (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠))
3534ralrimiv 3106 . . . . . 6 (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
36 ssint 4892 . . . . . 6 (((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ 𝑠)
3735, 36sylibr 233 . . . . 5 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) ⊆ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
3826, 37eqssd 3934 . . . 4 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟))
39 oveq1 7262 . . . . . 6 (𝑎 = 𝑟 → (𝑎𝑟𝑛) = (𝑟𝑟𝑛))
4039iuneq2d 4950 . . . . 5 (𝑎 = 𝑟 𝑛 ∈ ℕ (𝑎𝑟𝑛) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
41 eqid 2738 . . . . 5 (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛)) = (𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))
42 ovex 7288 . . . . . 6 (𝑟𝑟𝑛) ∈ V
433, 42iunex 7784 . . . . 5 𝑛 ∈ ℕ (𝑟𝑟𝑛) ∈ V
4440, 41, 43fvmpt 6857 . . . 4 (𝑟 ∈ V → ((𝑎 ∈ V ↦ 𝑛 ∈ ℕ (𝑎𝑟𝑛))‘𝑟) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4538, 44eqtrd 2778 . . 3 (𝑟 ∈ V → {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
4645mpteq2ia 5173 . 2 (𝑟 ∈ V ↦ {𝑧 ∣ (𝑟𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
471, 46eqtri 2766 1 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wral 3063  Vcvv 3422  wss 3883   cint 4876   ciun 4921  cmpt 5153  ccom 5584  cfv 6418  (class class class)co 7255  1c1 10803  cn 11903  0cn0 12163  cuz 12511  t+ctcl 14624  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-trcl 14626  df-relexp 14659
This theorem is referenced by:  brfvtrcld  41218  fvtrcllb1d  41219  trclfvcom  41220  cnvtrclfv  41221  cotrcltrcl  41222  trclimalb2  41223  trclfvdecomr  41225  dfrtrcl4  41235  corcltrcl  41236  cotrclrcl  41239
  Copyright terms: Public domain W3C validator