| Step | Hyp | Ref
| Expression |
| 1 | | df-trcl 15026 |
. 2
⊢ t+ =
(𝑟 ∈ V ↦ ∩ {𝑧
∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 2 | | relexp1g 15065 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟1) =
𝑟) |
| 3 | | nnex 12272 |
. . . . . . . . 9
⊢ ℕ
∈ V |
| 4 | | 1nn 12277 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
| 5 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑡 → (𝑎↑𝑟𝑛) = (𝑡↑𝑟𝑛)) |
| 6 | 5 | iuneq2d 5022 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑡 → ∪
𝑛 ∈ ℕ (𝑎↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑡↑𝑟𝑛)) |
| 7 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑡↑𝑟𝑛) = (𝑡↑𝑟𝑘)) |
| 8 | 7 | cbviunv 5040 |
. . . . . . . . . . . 12
⊢ ∪ 𝑛 ∈ ℕ (𝑡↑𝑟𝑛) = ∪ 𝑘 ∈ ℕ (𝑡↑𝑟𝑘) |
| 9 | 6, 8 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑡 → ∪
𝑛 ∈ ℕ (𝑎↑𝑟𝑛) = ∪ 𝑘 ∈ ℕ (𝑡↑𝑟𝑘)) |
| 10 | 9 | cbvmptv 5255 |
. . . . . . . . . 10
⊢ (𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛)) = (𝑡 ∈ V ↦ ∪ 𝑘 ∈ ℕ (𝑡↑𝑟𝑘)) |
| 11 | 10 | ov2ssiunov2 43713 |
. . . . . . . . 9
⊢ ((𝑟 ∈ V ∧ ℕ ∈ V
∧ 1 ∈ ℕ) → (𝑟↑𝑟1) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) |
| 12 | 3, 4, 11 | mp3an23 1455 |
. . . . . . . 8
⊢ (𝑟 ∈ V → (𝑟↑𝑟1)
⊆ ((𝑎 ∈ V
↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) |
| 13 | 2, 12 | eqsstrrd 4019 |
. . . . . . 7
⊢ (𝑟 ∈ V → 𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) |
| 14 | | nnuz 12921 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 15 | | 1nn0 12542 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 16 | 10 | iunrelexpuztr 43732 |
. . . . . . . 8
⊢ ((𝑟 ∈ V ∧ ℕ =
(ℤ≥‘1) ∧ 1 ∈ ℕ0) →
(((𝑎 ∈ V ↦
∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) |
| 17 | 14, 15, 16 | mp3an23 1455 |
. . . . . . 7
⊢ (𝑟 ∈ V → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) |
| 18 | | fvex 6919 |
. . . . . . . 8
⊢ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∈ V |
| 19 | | trcleq2lem 15030 |
. . . . . . . . . 10
⊢ (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) → ((𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)))) |
| 20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) → ((𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟))))) |
| 21 | 20 | alrimiv 1927 |
. . . . . . . 8
⊢ (𝑟 ∈ V → ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) → ((𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟))))) |
| 22 | | elabgt 3672 |
. . . . . . . 8
⊢ ((((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∈ V ∧ ∀𝑧(𝑧 = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) → ((𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟))))) → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)))) |
| 23 | 18, 21, 22 | sylancr 587 |
. . . . . . 7
⊢ (𝑟 ∈ V → (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∧ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∘ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)))) |
| 24 | 13, 17, 23 | mpbir2and 713 |
. . . . . 6
⊢ (𝑟 ∈ V → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 25 | | intss1 4963 |
. . . . . 6
⊢ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ∈ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → ∩ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) |
| 26 | 24, 25 | syl 17 |
. . . . 5
⊢ (𝑟 ∈ V → ∩ {𝑧
∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) |
| 27 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑠 ∈ V |
| 28 | | trcleq2lem 15030 |
. . . . . . . . 9
⊢ (𝑧 = 𝑠 → ((𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠))) |
| 29 | 27, 28 | elab 3679 |
. . . . . . . 8
⊢ (𝑠 ∈ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ (𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) |
| 30 | | eqid 2737 |
. . . . . . . . . 10
⊢ ℕ =
ℕ |
| 31 | 10 | iunrelexpmin1 43721 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ V ∧ ℕ =
ℕ) → ∀𝑠((𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
| 32 | 30, 31 | mpan2 691 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → ∀𝑠((𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
| 33 | 32 | 19.21bi 2189 |
. . . . . . . 8
⊢ (𝑟 ∈ V → ((𝑟 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
| 34 | 29, 33 | biimtrid 242 |
. . . . . . 7
⊢ (𝑟 ∈ V → (𝑠 ∈ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠)) |
| 35 | 34 | ralrimiv 3145 |
. . . . . 6
⊢ (𝑟 ∈ V → ∀𝑠 ∈ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠) |
| 36 | | ssint 4964 |
. . . . . 6
⊢ (((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ⊆ ∩ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ ∀𝑠 ∈ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ⊆ 𝑠) |
| 37 | 35, 36 | sylibr 234 |
. . . . 5
⊢ (𝑟 ∈ V → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) ⊆ ∩ {𝑧 ∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 38 | 26, 37 | eqssd 4001 |
. . . 4
⊢ (𝑟 ∈ V → ∩ {𝑧
∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟)) |
| 39 | | oveq1 7438 |
. . . . . 6
⊢ (𝑎 = 𝑟 → (𝑎↑𝑟𝑛) = (𝑟↑𝑟𝑛)) |
| 40 | 39 | iuneq2d 5022 |
. . . . 5
⊢ (𝑎 = 𝑟 → ∪
𝑛 ∈ ℕ (𝑎↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
| 41 | | eqid 2737 |
. . . . 5
⊢ (𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛)) = (𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛)) |
| 42 | | ovex 7464 |
. . . . . 6
⊢ (𝑟↑𝑟𝑛) ∈ V |
| 43 | 3, 42 | iunex 7993 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) ∈ V |
| 44 | 40, 41, 43 | fvmpt 7016 |
. . . 4
⊢ (𝑟 ∈ V → ((𝑎 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑎↑𝑟𝑛))‘𝑟) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
| 45 | 38, 44 | eqtrd 2777 |
. . 3
⊢ (𝑟 ∈ V → ∩ {𝑧
∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ∪
𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
| 46 | 45 | mpteq2ia 5245 |
. 2
⊢ (𝑟 ∈ V ↦ ∩ {𝑧
∣ (𝑟 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
| 47 | 1, 46 | eqtri 2765 |
1
⊢ t+ =
(𝑟 ∈ V ↦
∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |