Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclexi Structured version   Visualization version   GIF version

Theorem trclexi 38453
Description: The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.)
Hypothesis
Ref Expression
trclexi.1 𝐴𝑉
Assertion
Ref Expression
trclexi {𝑥 ∣ (𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem trclexi
StepHypRef Expression
1 ssun1 3927 . 2 𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))
2 coundir 5781 . . . 4 ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) = ((𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ∪ ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))))
3 coundi 5780 . . . . . 6 (𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) = ((𝐴𝐴) ∪ (𝐴 ∘ (dom 𝐴 × ran 𝐴)))
4 cossxp 5802 . . . . . . 7 (𝐴𝐴) ⊆ (dom 𝐴 × ran 𝐴)
5 cossxp 5802 . . . . . . . 8 (𝐴 ∘ (dom 𝐴 × ran 𝐴)) ⊆ (dom (dom 𝐴 × ran 𝐴) × ran 𝐴)
6 dmxpss 5706 . . . . . . . . 9 dom (dom 𝐴 × ran 𝐴) ⊆ dom 𝐴
7 xpss1 5267 . . . . . . . . 9 (dom (dom 𝐴 × ran 𝐴) ⊆ dom 𝐴 → (dom (dom 𝐴 × ran 𝐴) × ran 𝐴) ⊆ (dom 𝐴 × ran 𝐴))
86, 7ax-mp 5 . . . . . . . 8 (dom (dom 𝐴 × ran 𝐴) × ran 𝐴) ⊆ (dom 𝐴 × ran 𝐴)
95, 8sstri 3761 . . . . . . 7 (𝐴 ∘ (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴)
104, 9unssi 3939 . . . . . 6 ((𝐴𝐴) ∪ (𝐴 ∘ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
113, 10eqsstri 3784 . . . . 5 (𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
12 coundi 5780 . . . . . 6 ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) = (((dom 𝐴 × ran 𝐴) ∘ 𝐴) ∪ ((dom 𝐴 × ran 𝐴) ∘ (dom 𝐴 × ran 𝐴)))
13 cossxp 5802 . . . . . . . 8 ((dom 𝐴 × ran 𝐴) ∘ 𝐴) ⊆ (dom 𝐴 × ran (dom 𝐴 × ran 𝐴))
14 rnxpss 5707 . . . . . . . . 9 ran (dom 𝐴 × ran 𝐴) ⊆ ran 𝐴
15 xpss2 5268 . . . . . . . . 9 (ran (dom 𝐴 × ran 𝐴) ⊆ ran 𝐴 → (dom 𝐴 × ran (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴))
1614, 15ax-mp 5 . . . . . . . 8 (dom 𝐴 × ran (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴)
1713, 16sstri 3761 . . . . . . 7 ((dom 𝐴 × ran 𝐴) ∘ 𝐴) ⊆ (dom 𝐴 × ran 𝐴)
18 xptrrel 13929 . . . . . . 7 ((dom 𝐴 × ran 𝐴) ∘ (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴)
1917, 18unssi 3939 . . . . . 6 (((dom 𝐴 × ran 𝐴) ∘ 𝐴) ∪ ((dom 𝐴 × ran 𝐴) ∘ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
2012, 19eqsstri 3784 . . . . 5 ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
2111, 20unssi 3939 . . . 4 ((𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ∪ ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴)))) ⊆ (dom 𝐴 × ran 𝐴)
222, 21eqsstri 3784 . . 3 ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
23 ssun2 3928 . . 3 (dom 𝐴 × ran 𝐴) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))
2422, 23sstri 3761 . 2 ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))
25 trclexi.1 . . . . . 6 𝐴𝑉
2625elexi 3365 . . . . 5 𝐴 ∈ V
2726dmex 7246 . . . . . 6 dom 𝐴 ∈ V
2826rnex 7247 . . . . . 6 ran 𝐴 ∈ V
2927, 28xpex 7109 . . . . 5 (dom 𝐴 × ran 𝐴) ∈ V
3026, 29unex 7103 . . . 4 (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∈ V
31 trcleq2lem 13940 . . . 4 (𝑥 = (𝐴 ∪ (dom 𝐴 × ran 𝐴)) → ((𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∧ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)))))
3230, 31spcev 3451 . . 3 ((𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∧ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) → ∃𝑥(𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
33 intexab 4953 . . 3 (∃𝑥(𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ {𝑥 ∣ (𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V)
3432, 33sylib 208 . 2 ((𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∧ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) → {𝑥 ∣ (𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V)
351, 24, 34mp2an 672 1 {𝑥 ∣ (𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 382  wex 1852  wcel 2145  {cab 2757  Vcvv 3351  cun 3721  wss 3723   cint 4611   × cxp 5247  dom cdm 5249  ran crn 5250  ccom 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-int 4612  df-br 4787  df-opab 4847  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261
This theorem is referenced by:  dfrtrcl5  38462
  Copyright terms: Public domain W3C validator