Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclexi Structured version   Visualization version   GIF version

Theorem trclexi 43616
Description: The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.)
Hypothesis
Ref Expression
trclexi.1 𝐴𝑉
Assertion
Ref Expression
trclexi {𝑥 ∣ (𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem trclexi
StepHypRef Expression
1 ssun1 4144 . 2 𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))
2 coundir 6224 . . . 4 ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) = ((𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ∪ ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))))
3 coundi 6223 . . . . . 6 (𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) = ((𝐴𝐴) ∪ (𝐴 ∘ (dom 𝐴 × ran 𝐴)))
4 cossxp 6248 . . . . . . 7 (𝐴𝐴) ⊆ (dom 𝐴 × ran 𝐴)
5 cossxp 6248 . . . . . . . 8 (𝐴 ∘ (dom 𝐴 × ran 𝐴)) ⊆ (dom (dom 𝐴 × ran 𝐴) × ran 𝐴)
6 dmxpss 6147 . . . . . . . . 9 dom (dom 𝐴 × ran 𝐴) ⊆ dom 𝐴
7 xpss1 5660 . . . . . . . . 9 (dom (dom 𝐴 × ran 𝐴) ⊆ dom 𝐴 → (dom (dom 𝐴 × ran 𝐴) × ran 𝐴) ⊆ (dom 𝐴 × ran 𝐴))
86, 7ax-mp 5 . . . . . . . 8 (dom (dom 𝐴 × ran 𝐴) × ran 𝐴) ⊆ (dom 𝐴 × ran 𝐴)
95, 8sstri 3959 . . . . . . 7 (𝐴 ∘ (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴)
104, 9unssi 4157 . . . . . 6 ((𝐴𝐴) ∪ (𝐴 ∘ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
113, 10eqsstri 3996 . . . . 5 (𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
12 coundi 6223 . . . . . 6 ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) = (((dom 𝐴 × ran 𝐴) ∘ 𝐴) ∪ ((dom 𝐴 × ran 𝐴) ∘ (dom 𝐴 × ran 𝐴)))
13 cossxp 6248 . . . . . . . 8 ((dom 𝐴 × ran 𝐴) ∘ 𝐴) ⊆ (dom 𝐴 × ran (dom 𝐴 × ran 𝐴))
14 rnxpss 6148 . . . . . . . . 9 ran (dom 𝐴 × ran 𝐴) ⊆ ran 𝐴
15 xpss2 5661 . . . . . . . . 9 (ran (dom 𝐴 × ran 𝐴) ⊆ ran 𝐴 → (dom 𝐴 × ran (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴))
1614, 15ax-mp 5 . . . . . . . 8 (dom 𝐴 × ran (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴)
1713, 16sstri 3959 . . . . . . 7 ((dom 𝐴 × ran 𝐴) ∘ 𝐴) ⊆ (dom 𝐴 × ran 𝐴)
18 xptrrel 14953 . . . . . . 7 ((dom 𝐴 × ran 𝐴) ∘ (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴)
1917, 18unssi 4157 . . . . . 6 (((dom 𝐴 × ran 𝐴) ∘ 𝐴) ∪ ((dom 𝐴 × ran 𝐴) ∘ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
2012, 19eqsstri 3996 . . . . 5 ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
2111, 20unssi 4157 . . . 4 ((𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ∪ ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴)))) ⊆ (dom 𝐴 × ran 𝐴)
222, 21eqsstri 3996 . . 3 ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴)
23 ssun2 4145 . . 3 (dom 𝐴 × ran 𝐴) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))
2422, 23sstri 3959 . 2 ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))
25 trclexi.1 . . . . . 6 𝐴𝑉
2625elexi 3473 . . . . 5 𝐴 ∈ V
2726dmex 7888 . . . . . 6 dom 𝐴 ∈ V
2826rnex 7889 . . . . . 6 ran 𝐴 ∈ V
2927, 28xpex 7732 . . . . 5 (dom 𝐴 × ran 𝐴) ∈ V
3026, 29unex 7723 . . . 4 (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∈ V
31 trcleq2lem 14964 . . . 4 (𝑥 = (𝐴 ∪ (dom 𝐴 × ran 𝐴)) → ((𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∧ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)))))
3230, 31spcev 3575 . . 3 ((𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∧ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) → ∃𝑥(𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
33 intexab 5304 . . 3 (∃𝑥(𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ {𝑥 ∣ (𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V)
3432, 33sylib 218 . 2 ((𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∧ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) → {𝑥 ∣ (𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V)
351, 24, 34mp2an 692 1 {𝑥 ∣ (𝐴𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  {cab 2708  Vcvv 3450  cun 3915  wss 3917   cint 4913   × cxp 5639  dom cdm 5641  ran crn 5642  ccom 5645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by:  dfrtrcl5  43625
  Copyright terms: Public domain W3C validator