Proof of Theorem trclexi
Step | Hyp | Ref
| Expression |
1 | | ssun1 4112 |
. 2
⊢ 𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) |
2 | | coundir 6166 |
. . . 4
⊢ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) = ((𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ∪ ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴)))) |
3 | | coundi 6165 |
. . . . . 6
⊢ (𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) = ((𝐴 ∘ 𝐴) ∪ (𝐴 ∘ (dom 𝐴 × ran 𝐴))) |
4 | | cossxp 6190 |
. . . . . . 7
⊢ (𝐴 ∘ 𝐴) ⊆ (dom 𝐴 × ran 𝐴) |
5 | | cossxp 6190 |
. . . . . . . 8
⊢ (𝐴 ∘ (dom 𝐴 × ran 𝐴)) ⊆ (dom (dom 𝐴 × ran 𝐴) × ran 𝐴) |
6 | | dmxpss 6089 |
. . . . . . . . 9
⊢ dom (dom
𝐴 × ran 𝐴) ⊆ dom 𝐴 |
7 | | xpss1 5619 |
. . . . . . . . 9
⊢ (dom (dom
𝐴 × ran 𝐴) ⊆ dom 𝐴 → (dom (dom 𝐴 × ran 𝐴) × ran 𝐴) ⊆ (dom 𝐴 × ran 𝐴)) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . 8
⊢ (dom (dom
𝐴 × ran 𝐴) × ran 𝐴) ⊆ (dom 𝐴 × ran 𝐴) |
9 | 5, 8 | sstri 3935 |
. . . . . . 7
⊢ (𝐴 ∘ (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴) |
10 | 4, 9 | unssi 4125 |
. . . . . 6
⊢ ((𝐴 ∘ 𝐴) ∪ (𝐴 ∘ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴) |
11 | 3, 10 | eqsstri 3960 |
. . . . 5
⊢ (𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴) |
12 | | coundi 6165 |
. . . . . 6
⊢ ((dom
𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) = (((dom 𝐴 × ran 𝐴) ∘ 𝐴) ∪ ((dom 𝐴 × ran 𝐴) ∘ (dom 𝐴 × ran 𝐴))) |
13 | | cossxp 6190 |
. . . . . . . 8
⊢ ((dom
𝐴 × ran 𝐴) ∘ 𝐴) ⊆ (dom 𝐴 × ran (dom 𝐴 × ran 𝐴)) |
14 | | rnxpss 6090 |
. . . . . . . . 9
⊢ ran (dom
𝐴 × ran 𝐴) ⊆ ran 𝐴 |
15 | | xpss2 5620 |
. . . . . . . . 9
⊢ (ran (dom
𝐴 × ran 𝐴) ⊆ ran 𝐴 → (dom 𝐴 × ran (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴)) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . 8
⊢ (dom
𝐴 × ran (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴) |
17 | 13, 16 | sstri 3935 |
. . . . . . 7
⊢ ((dom
𝐴 × ran 𝐴) ∘ 𝐴) ⊆ (dom 𝐴 × ran 𝐴) |
18 | | xptrrel 14740 |
. . . . . . 7
⊢ ((dom
𝐴 × ran 𝐴) ∘ (dom 𝐴 × ran 𝐴)) ⊆ (dom 𝐴 × ran 𝐴) |
19 | 17, 18 | unssi 4125 |
. . . . . 6
⊢ (((dom
𝐴 × ran 𝐴) ∘ 𝐴) ∪ ((dom 𝐴 × ran 𝐴) ∘ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴) |
20 | 12, 19 | eqsstri 3960 |
. . . . 5
⊢ ((dom
𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴) |
21 | 11, 20 | unssi 4125 |
. . . 4
⊢ ((𝐴 ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ∪ ((dom 𝐴 × ran 𝐴) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴)))) ⊆ (dom 𝐴 × ran 𝐴) |
22 | 2, 21 | eqsstri 3960 |
. . 3
⊢ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (dom 𝐴 × ran 𝐴) |
23 | | ssun2 4113 |
. . 3
⊢ (dom
𝐴 × ran 𝐴) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) |
24 | 22, 23 | sstri 3935 |
. 2
⊢ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) |
25 | | trclexi.1 |
. . . . . 6
⊢ 𝐴 ∈ 𝑉 |
26 | 25 | elexi 3456 |
. . . . 5
⊢ 𝐴 ∈ V |
27 | 26 | dmex 7790 |
. . . . . 6
⊢ dom 𝐴 ∈ V |
28 | 26 | rnex 7791 |
. . . . . 6
⊢ ran 𝐴 ∈ V |
29 | 27, 28 | xpex 7635 |
. . . . 5
⊢ (dom
𝐴 × ran 𝐴) ∈ V |
30 | 26, 29 | unex 7628 |
. . . 4
⊢ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∈ V |
31 | | trcleq2lem 14751 |
. . . 4
⊢ (𝑥 = (𝐴 ∪ (dom 𝐴 × ran 𝐴)) → ((𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) ↔ (𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∧ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))))) |
32 | 30, 31 | spcev 3550 |
. . 3
⊢ ((𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∧ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
33 | | intexab 5272 |
. . 3
⊢
(∃𝑥(𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥) ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) |
34 | 32, 33 | sylib 217 |
. 2
⊢ ((𝐴 ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∧ ((𝐴 ∪ (dom 𝐴 × ran 𝐴)) ∘ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) ⊆ (𝐴 ∪ (dom 𝐴 × ran 𝐴))) → ∩
{𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V) |
35 | 1, 24, 34 | mp2an 690 |
1
⊢ ∩ {𝑥
∣ (𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V |