![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotrtrclfv | Structured version Visualization version GIF version |
Description: The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020.) |
Ref | Expression |
---|---|
cotrtrclfv | ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfv 15049 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
3 | simpr 484 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
4 | ssid 4031 | . . . . . 6 ⊢ 𝑅 ⊆ 𝑅 | |
5 | 3, 4 | jctil 519 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
6 | trcleq2lem 15040 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) | |
7 | 6 | elabg 3690 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ↔ (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ↔ (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) |
9 | 5, 8 | mpbird 257 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → 𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
10 | intss1 4987 | . . . 4 ⊢ (𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ 𝑅) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ 𝑅) |
12 | 2, 11 | eqsstrd 4047 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) ⊆ 𝑅) |
13 | trclfvlb 15057 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) | |
14 | 13 | adantr 480 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → 𝑅 ⊆ (t+‘𝑅)) |
15 | 12, 14 | eqssd 4026 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ⊆ wss 3976 ∩ cint 4970 ∘ ccom 5704 ‘cfv 6573 t+ctcl 15034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-trcl 15036 |
This theorem is referenced by: trclidm 15062 |
Copyright terms: Public domain | W3C validator |