MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotrtrclfv Structured version   Visualization version   GIF version

Theorem cotrtrclfv 14914
Description: The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
cotrtrclfv ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅)

Proof of Theorem cotrtrclfv
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 trclfv 14902 . . . 4 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
21adantr 480 . . 3 ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
3 simpr 484 . . . . . 6 ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → (𝑅𝑅) ⊆ 𝑅)
4 ssid 3952 . . . . . 6 𝑅𝑅
53, 4jctil 519 . . . . 5 ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → (𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅))
6 trcleq2lem 14893 . . . . . . 7 (𝑟 = 𝑅 → ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅)))
76elabg 3627 . . . . . 6 (𝑅𝑉 → (𝑅 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ↔ (𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅)))
87adantr 480 . . . . 5 ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → (𝑅 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ↔ (𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅)))
95, 8mpbird 257 . . . 4 ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → 𝑅 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
10 intss1 4908 . . . 4 (𝑅 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑅)
119, 10syl 17 . . 3 ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑅)
122, 11eqsstrd 3964 . 2 ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → (t+‘𝑅) ⊆ 𝑅)
13 trclfvlb 14910 . . 3 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
1413adantr 480 . 2 ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → 𝑅 ⊆ (t+‘𝑅))
1512, 14eqssd 3947 1 ((𝑅𝑉 ∧ (𝑅𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wss 3897   cint 4892  ccom 5615  cfv 6476  t+ctcl 14887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-iota 6432  df-fun 6478  df-fv 6484  df-trcl 14889
This theorem is referenced by:  trclidm  14915
  Copyright terms: Public domain W3C validator