| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cotrtrclfv | Structured version Visualization version GIF version | ||
| Description: The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020.) |
| Ref | Expression |
|---|---|
| cotrtrclfv | ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclfv 14942 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
| 4 | ssid 3966 | . . . . . 6 ⊢ 𝑅 ⊆ 𝑅 | |
| 5 | 3, 4 | jctil 519 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
| 6 | trcleq2lem 14933 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) | |
| 7 | 6 | elabg 3640 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ↔ (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ↔ (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) |
| 9 | 5, 8 | mpbird 257 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → 𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
| 10 | intss1 4923 | . . . 4 ⊢ (𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ 𝑅) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ 𝑅) |
| 12 | 2, 11 | eqsstrd 3978 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) ⊆ 𝑅) |
| 13 | trclfvlb 14950 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) | |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → 𝑅 ⊆ (t+‘𝑅)) |
| 15 | 12, 14 | eqssd 3961 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ⊆ wss 3911 ∩ cint 4906 ∘ ccom 5635 ‘cfv 6499 t+ctcl 14927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-trcl 14929 |
| This theorem is referenced by: trclidm 14955 |
| Copyright terms: Public domain | W3C validator |