![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotrtrclfv | Structured version Visualization version GIF version |
Description: The transitive closure of a transitive relation. (Contributed by RP, 28-Apr-2020.) |
Ref | Expression |
---|---|
cotrtrclfv | ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfv 14947 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | |
2 | 1 | adantr 482 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
3 | simpr 486 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
4 | ssid 4005 | . . . . . 6 ⊢ 𝑅 ⊆ 𝑅 | |
5 | 3, 4 | jctil 521 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅)) |
6 | trcleq2lem 14938 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) | |
7 | 6 | elabg 3667 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ↔ (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) |
8 | 7 | adantr 482 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ↔ (𝑅 ⊆ 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅))) |
9 | 5, 8 | mpbird 257 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → 𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
10 | intss1 4968 | . . . 4 ⊢ (𝑅 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ 𝑅) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} ⊆ 𝑅) |
12 | 2, 11 | eqsstrd 4021 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) ⊆ 𝑅) |
13 | trclfvlb 14955 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (t+‘𝑅)) | |
14 | 13 | adantr 482 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → 𝑅 ⊆ (t+‘𝑅)) |
15 | 12, 14 | eqssd 4000 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅) → (t+‘𝑅) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ⊆ wss 3949 ∩ cint 4951 ∘ ccom 5681 ‘cfv 6544 t+ctcl 14932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fv 6552 df-trcl 14934 |
This theorem is referenced by: trclidm 14960 |
Copyright terms: Public domain | W3C validator |