![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrucl0 | Structured version Visualization version GIF version |
Description: The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
Ref | Expression |
---|---|
cnvtrucl0 | ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (⊤ → ⊤)) | |
2 | idd 24 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ◡𝑥) → (⊤ → ⊤)) | |
3 | biidd 262 | . 2 ⊢ (𝑥 = 𝑋 → (⊤ ↔ ⊤)) | |
4 | ssidd 4022 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑋) | |
5 | elex 3502 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
6 | trud 1549 | . 2 ⊢ (𝑋 ∈ 𝑉 → ⊤) | |
7 | 1, 2, 3, 4, 5, 6 | clcnvlem 43629 | 1 ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 {cab 2714 ∖ cdif 3963 ∪ cun 3964 ⊆ wss 3966 ∩ cint 4954 ◡ccnv 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fv 6577 df-1st 8022 df-2nd 8023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |