| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrucl0 | Structured version Visualization version GIF version | ||
| Description: The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| cnvtrucl0 | ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (⊤ → ⊤)) | |
| 2 | idd 24 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ◡𝑥) → (⊤ → ⊤)) | |
| 3 | biidd 262 | . 2 ⊢ (𝑥 = 𝑋 → (⊤ ↔ ⊤)) | |
| 4 | ssidd 3987 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑋) | |
| 5 | elex 3484 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 6 | trud 1549 | . 2 ⊢ (𝑋 ∈ 𝑉 → ⊤) | |
| 7 | 1, 2, 3, 4, 5, 6 | clcnvlem 43598 | 1 ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 {cab 2712 ∖ cdif 3928 ∪ cun 3929 ⊆ wss 3931 ∩ cint 4926 ◡ccnv 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fv 6549 df-1st 7996 df-2nd 7997 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |