Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrucl0 | Structured version Visualization version GIF version |
Description: The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
Ref | Expression |
---|---|
cnvtrucl0 | ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (⊤ → ⊤)) | |
2 | idd 24 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ◡𝑥) → (⊤ → ⊤)) | |
3 | biidd 261 | . 2 ⊢ (𝑥 = 𝑋 → (⊤ ↔ ⊤)) | |
4 | ssidd 3940 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑋) | |
5 | elex 3440 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
6 | trud 1549 | . 2 ⊢ (𝑋 ∈ 𝑉 → ⊤) | |
7 | 1, 2, 3, 4, 5, 6 | clcnvlem 41120 | 1 ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 {cab 2715 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∩ cint 4876 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |