Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrucl0 Structured version   Visualization version   GIF version

Theorem cnvtrucl0 43606
Description: The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvtrucl0 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ ⊤)} = {𝑦 ∣ (𝑋𝑦 ∧ ⊤)})
Distinct variable groups:   𝑥,𝑦,𝑉   𝑥,𝑋,𝑦

Proof of Theorem cnvtrucl0
StepHypRef Expression
1 idd 24 . 2 ((𝑋𝑉𝑥 = (𝑦 ∪ (𝑋𝑋))) → (⊤ → ⊤))
2 idd 24 . 2 ((𝑋𝑉𝑦 = 𝑥) → (⊤ → ⊤))
3 biidd 262 . 2 (𝑥 = 𝑋 → (⊤ ↔ ⊤))
4 ssidd 3972 . 2 (𝑋𝑉𝑋𝑋)
5 elex 3471 . 2 (𝑋𝑉𝑋 ∈ V)
6 trud 1550 . 2 (𝑋𝑉 → ⊤)
71, 2, 3, 4, 5, 6clcnvlem 43605 1 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ ⊤)} = {𝑦 ∣ (𝑋𝑦 ∧ ⊤)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  {cab 2708  cdif 3913  cun 3914  wss 3916   cint 4912  ccnv 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fv 6521  df-1st 7970  df-2nd 7971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator