![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrucl0 | Structured version Visualization version GIF version |
Description: The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
Ref | Expression |
---|---|
cnvtrucl0 | ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (⊤ → ⊤)) | |
2 | idd 24 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ◡𝑥) → (⊤ → ⊤)) | |
3 | biidd 262 | . 2 ⊢ (𝑥 = 𝑋 → (⊤ ↔ ⊤)) | |
4 | ssidd 4002 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑋) | |
5 | elex 3489 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
6 | trud 1544 | . 2 ⊢ (𝑋 ∈ 𝑉 → ⊤) | |
7 | 1, 2, 3, 4, 5, 6 | clcnvlem 43044 | 1 ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 {cab 2705 ∖ cdif 3942 ∪ cun 3943 ⊆ wss 3945 ∩ cint 4945 ◡ccnv 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7988 df-2nd 7989 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |