Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrucl0 Structured version   Visualization version   GIF version

Theorem cnvtrucl0 43606
Description: The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvtrucl0 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ ⊤)} = {𝑦 ∣ (𝑋𝑦 ∧ ⊤)})
Distinct variable groups:   𝑥,𝑦,𝑉   𝑥,𝑋,𝑦

Proof of Theorem cnvtrucl0
StepHypRef Expression
1 idd 24 . 2 ((𝑋𝑉𝑥 = (𝑦 ∪ (𝑋𝑋))) → (⊤ → ⊤))
2 idd 24 . 2 ((𝑋𝑉𝑦 = 𝑥) → (⊤ → ⊤))
3 biidd 262 . 2 (𝑥 = 𝑋 → (⊤ ↔ ⊤))
4 ssidd 3967 . 2 (𝑋𝑉𝑋𝑋)
5 elex 3465 . 2 (𝑋𝑉𝑋 ∈ V)
6 trud 1550 . 2 (𝑋𝑉 → ⊤)
71, 2, 3, 4, 5, 6clcnvlem 43605 1 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ ⊤)} = {𝑦 ∣ (𝑋𝑦 ∧ ⊤)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  {cab 2707  cdif 3908  cun 3909  wss 3911   cint 4906  ccnv 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator