MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabrex Structured version   Visualization version   GIF version

Theorem elabrex 7246
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypothesis
Ref Expression
elabrex.1 𝐵 ∈ V
Assertion
Ref Expression
elabrex (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐵   𝑥,𝑦,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elabrex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tru 1538 . . . 4
2 csbeq1a 3903 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
32equcoms 2016 . . . . . 6 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
4 trud 1544 . . . . . 6 (𝑧 = 𝑥 → ⊤)
53, 42thd 265 . . . . 5 (𝑧 = 𝑥 → (𝐵 = 𝑧 / 𝑥𝐵 ↔ ⊤))
65rspcev 3607 . . . 4 ((𝑥𝐴 ∧ ⊤) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
71, 6mpan2 690 . . 3 (𝑥𝐴 → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
8 elabrex.1 . . . 4 𝐵 ∈ V
9 eqeq1 2731 . . . . 5 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
109rexbidv 3173 . . . 4 (𝑦 = 𝐵 → (∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵 ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
118, 10elab 3665 . . 3 (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
127, 11sylibr 233 . 2 (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵})
13 nfv 1910 . . . 4 𝑧 𝑦 = 𝐵
14 nfcsb1v 3914 . . . . 5 𝑥𝑧 / 𝑥𝐵
1514nfeq2 2915 . . . 4 𝑥 𝑦 = 𝑧 / 𝑥𝐵
162eqeq2d 2738 . . . 4 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
1713, 15, 16cbvrexw 3299 . . 3 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵)
1817abbii 2797 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵}
1912, 18eleqtrrdi 2839 1 (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wtru 1535  wcel 2099  {cab 2704  wrex 3065  Vcvv 3469  csb 3889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-sbc 3775  df-csb 3890
This theorem is referenced by:  eusvobj2  7406  lss1d  20836  prdsxmetlem  24261  prdsbl  24387  itg2monolem1  25667  heibor1  37218  dihglblem5  40708
  Copyright terms: Public domain W3C validator