Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elabrex | Structured version Visualization version GIF version |
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.) |
Ref | Expression |
---|---|
elabrex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elabrex | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1546 | . . . 4 ⊢ ⊤ | |
2 | csbeq1a 3802 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
3 | 2 | equcoms 2031 | . . . . . 6 ⊢ (𝑧 = 𝑥 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
4 | trud 1552 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ⊤) | |
5 | 3, 4 | 2thd 268 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐵 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ⊤)) |
6 | 5 | rspcev 3524 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ⊤) → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
7 | 1, 6 | mpan2 691 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
8 | elabrex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
9 | eqeq1 2742 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | |
10 | 9 | rexbidv 3206 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) |
11 | 8, 10 | elab 3571 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
12 | 7, 11 | sylibr 237 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵}) |
13 | nfv 1920 | . . . 4 ⊢ Ⅎ𝑧 𝑦 = 𝐵 | |
14 | nfcsb1v 3812 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 | |
15 | 14 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 |
16 | 2 | eqeq2d 2749 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐵)) |
17 | 13, 15, 16 | cbvrexw 3340 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵) |
18 | 17 | abbii 2803 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} |
19 | 12, 18 | eleqtrrdi 2844 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⊤wtru 1543 ∈ wcel 2113 {cab 2716 ∃wrex 3054 Vcvv 3397 ⦋csb 3788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-v 3399 df-sbc 3680 df-csb 3789 |
This theorem is referenced by: eusvobj2 7157 lss1d 19847 prdsxmetlem 23114 prdsbl 23237 itg2monolem1 24495 heibor1 35580 dihglblem5 38924 |
Copyright terms: Public domain | W3C validator |