| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabrex | Structured version Visualization version GIF version | ||
| Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| elabrex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elabrex | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1544 | . . . 4 ⊢ ⊤ | |
| 2 | csbeq1a 3913 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
| 3 | 2 | equcoms 2019 | . . . . . 6 ⊢ (𝑧 = 𝑥 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 4 | trud 1550 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ⊤) | |
| 5 | 3, 4 | 2thd 265 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐵 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ⊤)) |
| 6 | 5 | rspcev 3622 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ⊤) → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 7 | 1, 6 | mpan2 691 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 8 | elabrex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 9 | eqeq1 2741 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | |
| 10 | 9 | rexbidv 3179 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) |
| 11 | 8, 10 | elab 3679 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 12 | 7, 11 | sylibr 234 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵}) |
| 13 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧 𝑦 = 𝐵 | |
| 14 | nfcsb1v 3923 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 | |
| 15 | 14 | nfeq2 2923 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 |
| 16 | 2 | eqeq2d 2748 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐵)) |
| 17 | 13, 15, 16 | cbvrexw 3307 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵) |
| 18 | 17 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} |
| 19 | 12, 18 | eleqtrrdi 2852 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 {cab 2714 ∃wrex 3070 Vcvv 3480 ⦋csb 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-sbc 3789 df-csb 3900 |
| This theorem is referenced by: eusvobj2 7423 lss1d 20961 prdsxmetlem 24378 prdsbl 24504 itg2monolem1 25785 heibor1 37817 dihglblem5 41300 |
| Copyright terms: Public domain | W3C validator |