Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elabrex | Structured version Visualization version GIF version |
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.) |
Ref | Expression |
---|---|
elabrex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elabrex | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . . . 4 ⊢ ⊤ | |
2 | csbeq1a 3851 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
3 | 2 | equcoms 2021 | . . . . . 6 ⊢ (𝑧 = 𝑥 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
4 | trud 1549 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ⊤) | |
5 | 3, 4 | 2thd 265 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐵 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ⊤)) |
6 | 5 | rspcev 3566 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ⊤) → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
7 | 1, 6 | mpan2 689 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
8 | elabrex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
9 | eqeq1 2740 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | |
10 | 9 | rexbidv 3172 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) |
11 | 8, 10 | elab 3614 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
12 | 7, 11 | sylibr 233 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵}) |
13 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑧 𝑦 = 𝐵 | |
14 | nfcsb1v 3862 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 | |
15 | 14 | nfeq2 2922 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 |
16 | 2 | eqeq2d 2747 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐵)) |
17 | 13, 15, 16 | cbvrexw 3386 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵) |
18 | 17 | abbii 2806 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} |
19 | 12, 18 | eleqtrrdi 2848 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 {cab 2713 ∃wrex 3071 Vcvv 3437 ⦋csb 3837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-sbc 3722 df-csb 3838 |
This theorem is referenced by: eusvobj2 7300 lss1d 20270 prdsxmetlem 23566 prdsbl 23692 itg2monolem1 24960 heibor1 36012 dihglblem5 39354 |
Copyright terms: Public domain | W3C validator |