Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle1 Structured version   Visualization version   GIF version

Theorem lhpexle1 37030
Description: There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝

Proof of Theorem lhpexle1
StepHypRef Expression
1 lhpex1.l . . . . 5 = (le‘𝐾)
2 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle 37027 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)
5 tru 1534 . . . . . 6
65jctr 525 . . . . 5 (𝑝 𝑊 → (𝑝 𝑊 ∧ ⊤))
76reximi 3248 . . . 4 (∃𝑝𝐴 𝑝 𝑊 → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤))
84, 7syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤))
9 simpll 763 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝐾 ∈ HL)
10 simprl 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋𝐴)
11 eqid 2826 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1211, 3lhpbase 37020 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1312ad2antlr 723 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑊 ∈ (Base‘𝐾))
14 eqid 2826 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
151, 14, 2, 3lhplt 37022 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋(lt‘𝐾)𝑊)
1611, 14, 22atlt 36461 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑊 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑊) → ∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊))
179, 10, 13, 15, 16syl31anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊))
18 simp3r 1196 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝(lt‘𝐾)𝑊)
19 simp1ll 1230 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝐾 ∈ HL)
20 simp2 1131 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝𝐴)
21 simp1lr 1231 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑊𝐻)
221, 14pltle 17566 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑊𝐻) → (𝑝(lt‘𝐾)𝑊𝑝 𝑊))
2319, 20, 21, 22syl3anc 1365 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → (𝑝(lt‘𝐾)𝑊𝑝 𝑊))
2418, 23mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝 𝑊)
25 trud 1540 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → ⊤)
26 simp3l 1195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝𝑋)
2724, 25, 263jca 1122 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
28273expia 1115 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴) → ((𝑝𝑋𝑝(lt‘𝐾)𝑊) → (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋)))
2928reximdva 3279 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → (∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋)))
3017, 29mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
318, 30lhpexle1lem 37029 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
32 3simpb 1143 . . 3 ((𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋) → (𝑝 𝑊𝑝𝑋))
3332reximi 3248 . 2 (∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
3431, 33syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wtru 1531  wcel 2107  wne 3021  wrex 3144   class class class wbr 5063  cfv 6354  Basecbs 16478  lecple 16567  ltcplt 17546  Atomscatm 36285  HLchlt 36372  LHypclh 37006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36198  df-ol 36200  df-oml 36201  df-covers 36288  df-ats 36289  df-atl 36320  df-cvlat 36344  df-hlat 36373  df-lhyp 37010
This theorem is referenced by:  lhpexle2lem  37031  lhpexle2  37032  lhpex2leN  37035
  Copyright terms: Public domain W3C validator