Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle1 Structured version   Visualization version   GIF version

Theorem lhpexle1 40002
Description: There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝

Proof of Theorem lhpexle1
StepHypRef Expression
1 lhpex1.l . . . . 5 = (le‘𝐾)
2 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle 39999 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)
5 tru 1544 . . . . . 6
65jctr 524 . . . . 5 (𝑝 𝑊 → (𝑝 𝑊 ∧ ⊤))
76reximi 3067 . . . 4 (∃𝑝𝐴 𝑝 𝑊 → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤))
84, 7syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤))
9 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝐾 ∈ HL)
10 simprl 770 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋𝐴)
11 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1211, 3lhpbase 39992 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1312ad2antlr 727 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑊 ∈ (Base‘𝐾))
14 eqid 2729 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
151, 14, 2, 3lhplt 39994 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋(lt‘𝐾)𝑊)
1611, 14, 22atlt 39433 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑊 ∈ (Base‘𝐾)) ∧ 𝑋(lt‘𝐾)𝑊) → ∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊))
179, 10, 13, 15, 16syl31anc 1375 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊))
18 simp3r 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝(lt‘𝐾)𝑊)
19 simp1ll 1237 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝐾 ∈ HL)
20 simp2 1137 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝𝐴)
21 simp1lr 1238 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑊𝐻)
221, 14pltle 18292 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑊𝐻) → (𝑝(lt‘𝐾)𝑊𝑝 𝑊))
2319, 20, 21, 22syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → (𝑝(lt‘𝐾)𝑊𝑝 𝑊))
2418, 23mpd 15 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝 𝑊)
25 trud 1550 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → ⊤)
26 simp3l 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → 𝑝𝑋)
2724, 25, 263jca 1128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴 ∧ (𝑝𝑋𝑝(lt‘𝐾)𝑊)) → (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
28273expia 1121 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) ∧ 𝑝𝐴) → ((𝑝𝑋𝑝(lt‘𝐾)𝑊) → (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋)))
2928reximdva 3146 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → (∃𝑝𝐴 (𝑝𝑋𝑝(lt‘𝐾)𝑊) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋)))
3017, 29mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
318, 30lhpexle1lem 40001 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋))
32 3simpb 1149 . . 3 ((𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋) → (𝑝 𝑊𝑝𝑋))
3332reximi 3067 . 2 (∃𝑝𝐴 (𝑝 𝑊 ∧ ⊤ ∧ 𝑝𝑋) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
3431, 33syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  ltcplt 18269  Atomscatm 39256  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982
This theorem is referenced by:  lhpexle2lem  40003  lhpexle2  40004  lhpex2leN  40007
  Copyright terms: Public domain W3C validator