| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2738 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 = 𝑧 ↔ 𝐴 = 𝑧)) |
| 2 | | nfcv 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐴 |
| 3 | | nfcv 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐷 |
| 4 | | disjprg.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
| 5 | 2, 3, 4 | csbhypf 3907 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐷) |
| 6 | 5 | ineq1d 4199 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶)) |
| 7 | 6 | eqeq1d 2736 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅ ↔ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅)) |
| 8 | 1, 7 | orbi12d 918 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅))) |
| 9 | 8 | ralbidv 3165 |
. . . . 5
⊢ (𝑦 = 𝐴 → (∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ ∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅))) |
| 10 | | eqeq1 2738 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑦 = 𝑧 ↔ 𝐵 = 𝑧)) |
| 11 | | nfcv 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐵 |
| 12 | | nfcv 2897 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐸 |
| 13 | | disjprg.2 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) |
| 14 | 11, 12, 13 | csbhypf 3907 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐸) |
| 15 | 14 | ineq1d 4199 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶)) |
| 16 | 15 | eqeq1d 2736 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅ ↔ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅)) |
| 17 | 10, 16 | orbi12d 918 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅))) |
| 18 | 17 | ralbidv 3165 |
. . . . 5
⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ ∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅))) |
| 19 | 9, 18 | ralprg 4676 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∀𝑦 ∈ {𝐴, 𝐵}∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ∧ ∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅)))) |
| 20 | 19 | 3adant3 1132 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (∀𝑦 ∈ {𝐴, 𝐵}∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ∧ ∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅)))) |
| 21 | | id 22 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐴 → 𝑧 = 𝐴) |
| 22 | 21 | eqcomd 2740 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → 𝐴 = 𝑧) |
| 23 | 22 | orcd 873 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅)) |
| 24 | | trud 1549 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → ⊤) |
| 25 | 23, 24 | 2thd 265 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → ((𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔
⊤)) |
| 26 | | eqeq2 2746 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝐴 = 𝑧 ↔ 𝐴 = 𝐵)) |
| 27 | 11, 12, 13 | csbhypf 3907 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐵 → ⦋𝑧 / 𝑥⦌𝐶 = 𝐸) |
| 28 | 27 | ineq2d 4200 |
. . . . . . . . 9
⊢ (𝑧 = 𝐵 → (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = (𝐷 ∩ 𝐸)) |
| 29 | 28 | eqeq1d 2736 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → ((𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅ ↔ (𝐷 ∩ 𝐸) = ∅)) |
| 30 | 26, 29 | orbi12d 918 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → ((𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅))) |
| 31 | 25, 30 | ralprg 4676 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (⊤ ∧ (𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅)))) |
| 32 | 31 | 3adant3 1132 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (⊤ ∧ (𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅)))) |
| 33 | | simp3 1138 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) |
| 34 | 33 | neneqd 2936 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → ¬ 𝐴 = 𝐵) |
| 35 | | biorf 936 |
. . . . . . 7
⊢ (¬
𝐴 = 𝐵 → ((𝐷 ∩ 𝐸) = ∅ ↔ (𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅))) |
| 36 | 34, 35 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → ((𝐷 ∩ 𝐸) = ∅ ↔ (𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅))) |
| 37 | | tru 1543 |
. . . . . . 7
⊢
⊤ |
| 38 | 37 | biantrur 530 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅) ↔ (⊤ ∧ (𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅))) |
| 39 | 36, 38 | bitrdi 287 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → ((𝐷 ∩ 𝐸) = ∅ ↔ (⊤ ∧ (𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅)))) |
| 40 | 32, 39 | bitr4d 282 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (𝐷 ∩ 𝐸) = ∅)) |
| 41 | | eqeq2 2746 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → (𝐵 = 𝑧 ↔ 𝐵 = 𝐴)) |
| 42 | | eqcom 2741 |
. . . . . . . . 9
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
| 43 | 41, 42 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (𝐵 = 𝑧 ↔ 𝐴 = 𝐵)) |
| 44 | 2, 3, 4 | csbhypf 3907 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌𝐶 = 𝐷) |
| 45 | 44 | ineq2d 4200 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐴 → (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = (𝐸 ∩ 𝐷)) |
| 46 | | incom 4189 |
. . . . . . . . . 10
⊢ (𝐸 ∩ 𝐷) = (𝐷 ∩ 𝐸) |
| 47 | 45, 46 | eqtrdi 2785 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = (𝐷 ∩ 𝐸)) |
| 48 | 47 | eqeq1d 2736 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → ((𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅ ↔ (𝐷 ∩ 𝐸) = ∅)) |
| 49 | 43, 48 | orbi12d 918 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → ((𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅))) |
| 50 | | id 22 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐵 → 𝑧 = 𝐵) |
| 51 | 50 | eqcomd 2740 |
. . . . . . . . 9
⊢ (𝑧 = 𝐵 → 𝐵 = 𝑧) |
| 52 | 51 | orcd 873 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅)) |
| 53 | | trud 1549 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → ⊤) |
| 54 | 52, 53 | 2thd 265 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → ((𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔
⊤)) |
| 55 | 49, 54 | ralprg 4676 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ ((𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅) ∧
⊤))) |
| 56 | 55 | 3adant3 1132 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ ((𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅) ∧
⊤))) |
| 57 | 37 | biantru 529 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅) ↔ ((𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅) ∧
⊤)) |
| 58 | 36, 57 | bitrdi 287 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → ((𝐷 ∩ 𝐸) = ∅ ↔ ((𝐴 = 𝐵 ∨ (𝐷 ∩ 𝐸) = ∅) ∧
⊤))) |
| 59 | 56, 58 | bitr4d 282 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ (𝐷 ∩ 𝐸) = ∅)) |
| 60 | 40, 59 | anbi12d 632 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → ((∀𝑧 ∈ {𝐴, 𝐵} (𝐴 = 𝑧 ∨ (𝐷 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ∧ ∀𝑧 ∈ {𝐴, 𝐵} (𝐵 = 𝑧 ∨ (𝐸 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅)) ↔ ((𝐷 ∩ 𝐸) = ∅ ∧ (𝐷 ∩ 𝐸) = ∅))) |
| 61 | 20, 60 | bitrd 279 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (∀𝑦 ∈ {𝐴, 𝐵}∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅) ↔ ((𝐷 ∩ 𝐸) = ∅ ∧ (𝐷 ∩ 𝐸) = ∅))) |
| 62 | | disjors 5106 |
. 2
⊢
(Disj 𝑥
∈ {𝐴, 𝐵}𝐶 ↔ ∀𝑦 ∈ {𝐴, 𝐵}∀𝑧 ∈ {𝐴, 𝐵} (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐶 ∩ ⦋𝑧 / 𝑥⦌𝐶) = ∅)) |
| 63 | | pm4.24 563 |
. 2
⊢ ((𝐷 ∩ 𝐸) = ∅ ↔ ((𝐷 ∩ 𝐸) = ∅ ∧ (𝐷 ∩ 𝐸) = ∅)) |
| 64 | 61, 62, 63 | 3bitr4g 314 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝐶 ↔ (𝐷 ∩ 𝐸) = ∅)) |