MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabrexg Structured version   Visualization version   GIF version

Theorem elabrexg 7263
Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elabrexg ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem elabrexg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tru 1541 . . . . 5
2 csbeq1a 3922 . . . . . . . 8 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
32equcoms 2017 . . . . . . 7 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
4 trud 1547 . . . . . . 7 (𝑧 = 𝑥 → ⊤)
53, 42thd 265 . . . . . 6 (𝑧 = 𝑥 → (𝐵 = 𝑧 / 𝑥𝐵 ↔ ⊤))
65rspcev 3622 . . . . 5 ((𝑥𝐴 ∧ ⊤) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
71, 6mpan2 691 . . . 4 (𝑥𝐴 → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
87adantr 480 . . 3 ((𝑥𝐴𝐵𝑉) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
9 eqeq1 2739 . . . . . 6 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
109rexbidv 3177 . . . . 5 (𝑦 = 𝐵 → (∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵 ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
1110elabg 3677 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
1211adantl 481 . . 3 ((𝑥𝐴𝐵𝑉) → (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
138, 12mpbird 257 . 2 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵})
14 nfv 1912 . . . 4 𝑧 𝑦 = 𝐵
15 nfcsb1v 3933 . . . . 5 𝑥𝑧 / 𝑥𝐵
1615nfeq2 2921 . . . 4 𝑥 𝑦 = 𝑧 / 𝑥𝐵
172eqeq2d 2746 . . . 4 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
1814, 16, 17cbvrexw 3305 . . 3 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵)
1918abbii 2807 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵}
2013, 19eleqtrrdi 2850 1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2106  {cab 2712  wrex 3068  csb 3908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-sbc 3792  df-csb 3909
This theorem is referenced by:  upbdrech  45256  ssfiunibd  45260
  Copyright terms: Public domain W3C validator