Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elabrexg Structured version   Visualization version   GIF version

Theorem elabrexg 43810
Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elabrexg ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem elabrexg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tru 1545 . . . . 5
2 csbeq1a 3907 . . . . . . . 8 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
32equcoms 2023 . . . . . . 7 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
4 trud 1551 . . . . . . 7 (𝑧 = 𝑥 → ⊤)
53, 42thd 264 . . . . . 6 (𝑧 = 𝑥 → (𝐵 = 𝑧 / 𝑥𝐵 ↔ ⊤))
65rspcev 3612 . . . . 5 ((𝑥𝐴 ∧ ⊤) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
71, 6mpan2 689 . . . 4 (𝑥𝐴 → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
87adantr 481 . . 3 ((𝑥𝐴𝐵𝑉) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
9 eqeq1 2736 . . . . . 6 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
109rexbidv 3178 . . . . 5 (𝑦 = 𝐵 → (∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵 ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
1110elabg 3666 . . . 4 (𝐵𝑉 → (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
1211adantl 482 . . 3 ((𝑥𝐴𝐵𝑉) → (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
138, 12mpbird 256 . 2 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵})
14 nfv 1917 . . . 4 𝑧 𝑦 = 𝐵
15 nfcsb1v 3918 . . . . 5 𝑥𝑧 / 𝑥𝐵
1615nfeq2 2920 . . . 4 𝑥 𝑦 = 𝑧 / 𝑥𝐵
172eqeq2d 2743 . . . 4 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
1814, 16, 17cbvrexw 3304 . . 3 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵)
1918abbii 2802 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵}
2013, 19eleqtrrdi 2844 1 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  {cab 2709  wrex 3070  csb 3893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-sbc 3778  df-csb 3894
This theorem is referenced by:  upbdrech  44094  ssfiunibd  44098
  Copyright terms: Public domain W3C validator