| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thinciso | Structured version Visualization version GIF version | ||
| Description: In a thin category, 𝐹:𝑋⟶𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thinciso.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| thinciso.i | ⊢ 𝐼 = (Iso‘𝐶) |
| thinciso.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| thinciso | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | thinciso.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | thinciso.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
| 4 | eqid 2729 | . . 3 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 5 | thincsect.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 6 | 5 | thinccd 49405 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | thincsect.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | thincsect.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | thinciso.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 10 | 1, 2, 3, 4, 6, 7, 8, 9 | dfiso3 17715 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))) |
| 11 | simprl 770 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔 ∈ (𝑌𝐻𝑋)) | |
| 12 | 9 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹 ∈ (𝑋𝐻𝑌)) |
| 13 | 5 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐶 ∈ ThinCat) |
| 14 | 8 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑌 ∈ 𝐵) |
| 15 | 7 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑋 ∈ 𝐵) |
| 16 | 13, 1, 14, 15, 4, 2 | thincsect 49449 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝐹 ∈ (𝑋𝐻𝑌)))) |
| 17 | 11, 12, 16 | mpbir2and 713 | . . . . 5 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝐹) |
| 18 | 13, 1, 15, 14, 4, 2 | thincsect 49449 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝐹(𝑋(Sect‘𝐶)𝑌)𝑔 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))) |
| 19 | 12, 11, 18 | mpbir2and 713 | . . . . 5 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔) |
| 20 | 17, 19 | jca 511 | . . . 4 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) |
| 21 | trud 1550 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → ⊤) | |
| 22 | 21 | reximdva0 4314 | . . . 4 ⊢ ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)⊤) |
| 23 | 20, 22 | reximddv 3149 | . . 3 ⊢ ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) |
| 24 | rexn0 4470 | . . . 4 ⊢ (∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔) → (𝑌𝐻𝑋) ≠ ∅) | |
| 25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) → (𝑌𝐻𝑋) ≠ ∅) |
| 26 | 23, 25 | impbida 800 | . 2 ⊢ (𝜑 → ((𝑌𝐻𝑋) ≠ ∅ ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))) |
| 27 | 10, 26 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 Sectcsect 17686 Isociso 17688 ThinCatcthinc 49399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-cat 17609 df-cid 17610 df-sect 17689 df-inv 17690 df-iso 17691 df-thinc 49400 |
| This theorem is referenced by: thinccic 49453 |
| Copyright terms: Public domain | W3C validator |