Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thinciso | Structured version Visualization version GIF version |
Description: In a thin category, 𝐹:𝑋⟶𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thinciso.h | ⊢ 𝐻 = (Hom ‘𝐶) |
thinciso.i | ⊢ 𝐼 = (Iso‘𝐶) |
thinciso.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
thinciso | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | thinciso.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | thinciso.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
4 | eqid 2737 | . . 3 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
5 | thincsect.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
6 | 5 | thinccd 46558 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | thincsect.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | thincsect.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | thinciso.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
10 | 1, 2, 3, 4, 6, 7, 8, 9 | dfiso3 17555 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))) |
11 | simprl 768 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔 ∈ (𝑌𝐻𝑋)) | |
12 | 9 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹 ∈ (𝑋𝐻𝑌)) |
13 | 5 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐶 ∈ ThinCat) |
14 | 8 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑌 ∈ 𝐵) |
15 | 7 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑋 ∈ 𝐵) |
16 | 13, 1, 14, 15, 4, 2 | thincsect 46590 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝐹 ∈ (𝑋𝐻𝑌)))) |
17 | 11, 12, 16 | mpbir2and 710 | . . . . 5 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝐹) |
18 | 13, 1, 15, 14, 4, 2 | thincsect 46590 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝐹(𝑋(Sect‘𝐶)𝑌)𝑔 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))) |
19 | 12, 11, 18 | mpbir2and 710 | . . . . 5 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔) |
20 | 17, 19 | jca 512 | . . . 4 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) |
21 | trud 1550 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → ⊤) | |
22 | 21 | reximdva0 4296 | . . . 4 ⊢ ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)⊤) |
23 | 20, 22 | reximddv 3165 | . . 3 ⊢ ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) |
24 | rexn0 4453 | . . . 4 ⊢ (∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔) → (𝑌𝐻𝑋) ≠ ∅) | |
25 | 24 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) → (𝑌𝐻𝑋) ≠ ∅) |
26 | 23, 25 | impbida 798 | . 2 ⊢ (𝜑 → ((𝑌𝐻𝑋) ≠ ∅ ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))) |
27 | 10, 26 | bitr4d 281 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 ≠ wne 2941 ∃wrex 3071 ∅c0 4267 class class class wbr 5087 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 Hom chom 17043 Sectcsect 17526 Isociso 17528 ThinCatcthinc 46552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-1st 7876 df-2nd 7877 df-cat 17447 df-cid 17448 df-sect 17529 df-inv 17530 df-iso 17531 df-thinc 46553 |
This theorem is referenced by: thinccic 46594 |
Copyright terms: Public domain | W3C validator |