Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinciso Structured version   Visualization version   GIF version

Theorem thinciso 46341
Description: In a thin category, 𝐹:𝑋𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
thincsect.c (𝜑𝐶 ∈ ThinCat)
thincsect.b 𝐵 = (Base‘𝐶)
thincsect.x (𝜑𝑋𝐵)
thincsect.y (𝜑𝑌𝐵)
thinciso.h 𝐻 = (Hom ‘𝐶)
thinciso.i 𝐼 = (Iso‘𝐶)
thinciso.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
thinciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅))

Proof of Theorem thinciso
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 thincsect.b . . 3 𝐵 = (Base‘𝐶)
2 thinciso.h . . 3 𝐻 = (Hom ‘𝐶)
3 thinciso.i . . 3 𝐼 = (Iso‘𝐶)
4 eqid 2738 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
5 thincsect.c . . . 4 (𝜑𝐶 ∈ ThinCat)
65thinccd 46306 . . 3 (𝜑𝐶 ∈ Cat)
7 thincsect.x . . 3 (𝜑𝑋𝐵)
8 thincsect.y . . 3 (𝜑𝑌𝐵)
9 thinciso.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
101, 2, 3, 4, 6, 7, 8, 9dfiso3 17485 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)))
11 simprl 768 . . . . . 6 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔 ∈ (𝑌𝐻𝑋))
129ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹 ∈ (𝑋𝐻𝑌))
135ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐶 ∈ ThinCat)
148ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑌𝐵)
157ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑋𝐵)
1613, 1, 14, 15, 4, 2thincsect 46338 . . . . . 6 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝐹 ∈ (𝑋𝐻𝑌))))
1711, 12, 16mpbir2and 710 . . . . 5 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝐹)
1813, 1, 15, 14, 4, 2thincsect 46338 . . . . . 6 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝐹(𝑋(Sect‘𝐶)𝑌)𝑔 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
1912, 11, 18mpbir2and 710 . . . . 5 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)
2017, 19jca 512 . . . 4 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))
21 trud 1549 . . . . 5 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → ⊤)
2221reximdva0 4285 . . . 4 ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)⊤)
2320, 22reximddv 3204 . . 3 ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))
24 rexn0 4441 . . . 4 (∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔) → (𝑌𝐻𝑋) ≠ ∅)
2524adantl 482 . . 3 ((𝜑 ∧ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) → (𝑌𝐻𝑋) ≠ ∅)
2623, 25impbida 798 . 2 (𝜑 → ((𝑌𝐻𝑋) ≠ ∅ ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)))
2710, 26bitr4d 281 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wtru 1540  wcel 2106  wne 2943  wrex 3065  c0 4256   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  Sectcsect 17456  Isociso 17458  ThinCatcthinc 46300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-cat 17377  df-cid 17378  df-sect 17459  df-inv 17460  df-iso 17461  df-thinc 46301
This theorem is referenced by:  thinccic  46342
  Copyright terms: Public domain W3C validator