![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thinciso | Structured version Visualization version GIF version |
Description: In a thin category, 𝐹:𝑋⟶𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thinciso.h | ⊢ 𝐻 = (Hom ‘𝐶) |
thinciso.i | ⊢ 𝐼 = (Iso‘𝐶) |
thinciso.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
thinciso | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | thinciso.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | thinciso.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
4 | eqid 2740 | . . 3 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
5 | thincsect.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
6 | 5 | thinccd 48692 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | thincsect.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | thincsect.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | thinciso.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
10 | 1, 2, 3, 4, 6, 7, 8, 9 | dfiso3 17834 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))) |
11 | simprl 770 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔 ∈ (𝑌𝐻𝑋)) | |
12 | 9 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹 ∈ (𝑋𝐻𝑌)) |
13 | 5 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐶 ∈ ThinCat) |
14 | 8 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑌 ∈ 𝐵) |
15 | 7 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑋 ∈ 𝐵) |
16 | 13, 1, 14, 15, 4, 2 | thincsect 48724 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝐹 ∈ (𝑋𝐻𝑌)))) |
17 | 11, 12, 16 | mpbir2and 712 | . . . . 5 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝐹) |
18 | 13, 1, 15, 14, 4, 2 | thincsect 48724 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝐹(𝑋(Sect‘𝐶)𝑌)𝑔 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)))) |
19 | 12, 11, 18 | mpbir2and 712 | . . . . 5 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔) |
20 | 17, 19 | jca 511 | . . . 4 ⊢ (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) |
21 | trud 1547 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → ⊤) | |
22 | 21 | reximdva0 4378 | . . . 4 ⊢ ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)⊤) |
23 | 20, 22 | reximddv 3177 | . . 3 ⊢ ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) |
24 | rexn0 4534 | . . . 4 ⊢ (∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔) → (𝑌𝐻𝑋) ≠ ∅) | |
25 | 24 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) → (𝑌𝐻𝑋) ≠ ∅) |
26 | 23, 25 | impbida 800 | . 2 ⊢ (𝜑 → ((𝑌𝐻𝑋) ≠ ∅ ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))) |
27 | 10, 26 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 Sectcsect 17805 Isociso 17807 ThinCatcthinc 48686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-cat 17726 df-cid 17727 df-sect 17808 df-inv 17809 df-iso 17810 df-thinc 48687 |
This theorem is referenced by: thinccic 48728 |
Copyright terms: Public domain | W3C validator |