Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinciso Structured version   Visualization version   GIF version

Theorem thinciso 46229
Description: In a thin category, 𝐹:𝑋𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
thincsect.c (𝜑𝐶 ∈ ThinCat)
thincsect.b 𝐵 = (Base‘𝐶)
thincsect.x (𝜑𝑋𝐵)
thincsect.y (𝜑𝑌𝐵)
thinciso.h 𝐻 = (Hom ‘𝐶)
thinciso.i 𝐼 = (Iso‘𝐶)
thinciso.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
thinciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅))

Proof of Theorem thinciso
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 thincsect.b . . 3 𝐵 = (Base‘𝐶)
2 thinciso.h . . 3 𝐻 = (Hom ‘𝐶)
3 thinciso.i . . 3 𝐼 = (Iso‘𝐶)
4 eqid 2738 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
5 thincsect.c . . . 4 (𝜑𝐶 ∈ ThinCat)
65thinccd 46194 . . 3 (𝜑𝐶 ∈ Cat)
7 thincsect.x . . 3 (𝜑𝑋𝐵)
8 thincsect.y . . 3 (𝜑𝑌𝐵)
9 thinciso.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
101, 2, 3, 4, 6, 7, 8, 9dfiso3 17402 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)))
11 simprl 767 . . . . . 6 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔 ∈ (𝑌𝐻𝑋))
129ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹 ∈ (𝑋𝐻𝑌))
135ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐶 ∈ ThinCat)
148ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑌𝐵)
157ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑋𝐵)
1613, 1, 14, 15, 4, 2thincsect 46226 . . . . . 6 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (𝑔 ∈ (𝑌𝐻𝑋) ∧ 𝐹 ∈ (𝑋𝐻𝑌))))
1711, 12, 16mpbir2and 709 . . . . 5 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝑔(𝑌(Sect‘𝐶)𝑋)𝐹)
1813, 1, 15, 14, 4, 2thincsect 46226 . . . . . 6 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝐹(𝑋(Sect‘𝐶)𝑌)𝑔 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋))))
1912, 11, 18mpbir2and 709 . . . . 5 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → 𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)
2017, 19jca 511 . . . 4 (((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) ∧ (𝑔 ∈ (𝑌𝐻𝑋) ∧ ⊤)) → (𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))
21 trud 1549 . . . . 5 ((𝜑𝑔 ∈ (𝑌𝐻𝑋)) → ⊤)
2221reximdva0 4282 . . . 4 ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)⊤)
2320, 22reximddv 3203 . . 3 ((𝜑 ∧ (𝑌𝐻𝑋) ≠ ∅) → ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔))
24 rexn0 4438 . . . 4 (∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔) → (𝑌𝐻𝑋) ≠ ∅)
2524adantl 481 . . 3 ((𝜑 ∧ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)) → (𝑌𝐻𝑋) ≠ ∅)
2623, 25impbida 797 . 2 (𝜑 → ((𝑌𝐻𝑋) ≠ ∅ ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝑔)))
2710, 26bitr4d 281 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  wne 2942  wrex 3064  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  Sectcsect 17373  Isociso 17375  ThinCatcthinc 46188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-cat 17294  df-cid 17295  df-sect 17376  df-inv 17377  df-iso 17378  df-thinc 46189
This theorem is referenced by:  thinccic  46230
  Copyright terms: Public domain W3C validator