Proof of Theorem poimirlem19
Step | Hyp | Ref
| Expression |
1 | | poimirlem22.2 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
2 | | fveq2 6446 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (2nd ‘𝑡) = (2nd ‘𝑇)) |
3 | 2 | breq2d 4898 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑇))) |
4 | 3 | ifbid 4329 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1))) |
5 | 4 | csbeq1d 3758 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
6 | | 2fveq3 6451 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑇))) |
7 | | 2fveq3 6451 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑇))) |
8 | 7 | imaeq1d 5719 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑗))) |
9 | 8 | xpeq1d 5384 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1})) |
10 | 7 | imaeq1d 5719 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑗 + 1)...𝑁))) |
11 | 10 | xpeq1d 5384 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) |
12 | 9, 11 | uneq12d 3991 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
13 | 6, 12 | oveq12d 6940 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
14 | 13 | csbeq2dv 4217 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
15 | 5, 14 | eqtrd 2814 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
16 | 15 | mpteq2dv 4980 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
17 | 16 | eqeq2d 2788 |
. . . . 5
⊢ (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
18 | | poimirlem22.s |
. . . . 5
⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
19 | 17, 18 | elrab2 3576 |
. . . 4
⊢ (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
20 | 19 | simprbi 492 |
. . 3
⊢ (𝑇 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
21 | 1, 20 | syl 17 |
. 2
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
22 | | elrabi 3567 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
23 | 22, 18 | eleq2s 2877 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝑆 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
24 | 1, 23 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
25 | | xp1st 7477 |
. . . . . . . . . 10
⊢ (𝑇 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝑇) ∈
(((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
27 | | xp1st 7477 |
. . . . . . . . 9
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
29 | | elmapfn 8163 |
. . . . . . . 8
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
30 | 28, 29 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
31 | 30 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
32 | | 1ex 10372 |
. . . . . . . . . 10
⊢ 1 ∈
V |
33 | | fnconstg 6343 |
. . . . . . . . . 10
⊢ (1 ∈
V → (((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦))) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . . 9
⊢
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) |
35 | | c0ex 10370 |
. . . . . . . . . 10
⊢ 0 ∈
V |
36 | | fnconstg 6343 |
. . . . . . . . . 10
⊢ (0 ∈
V → (((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
37 | 35, 36 | ax-mp 5 |
. . . . . . . . 9
⊢
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) |
38 | 34, 37 | pm3.2i 464 |
. . . . . . . 8
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
39 | | xp2nd 7478 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
40 | 26, 39 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
41 | | fvex 6459 |
. . . . . . . . . . . . 13
⊢
(2nd ‘(1st ‘𝑇)) ∈ V |
42 | | f1oeq1 6380 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (2nd
‘(1st ‘𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))) |
43 | 41, 42 | elab 3558 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
44 | 40, 43 | sylib 210 |
. . . . . . . . . . 11
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
45 | | dff1o3 6397 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡(2nd ‘(1st
‘𝑇)))) |
46 | 45 | simprbi 492 |
. . . . . . . . . . 11
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡(2nd ‘(1st
‘𝑇))) |
47 | 44, 46 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Fun ◡(2nd ‘(1st
‘𝑇))) |
48 | | imain 6219 |
. . . . . . . . . 10
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
49 | 47, 48 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
50 | | elfznn0 12751 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0) |
51 | 50 | nn0red 11703 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) |
52 | 51 | ltp1d 11308 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1)) |
53 | | fzdisj 12685 |
. . . . . . . . . . . 12
⊢ (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
54 | 52, 53 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
55 | 54 | imaeq2d 5720 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
56 | | ima0 5735 |
. . . . . . . . . 10
⊢
((2nd ‘(1st ‘𝑇)) “ ∅) =
∅ |
57 | 55, 56 | syl6eq 2830 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ∅) |
58 | 49, 57 | sylan9req 2835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) |
59 | | fnun 6243 |
. . . . . . . 8
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ∧ (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
60 | 38, 58, 59 | sylancr 581 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
61 | | imaundi 5799 |
. . . . . . . . 9
⊢
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
62 | | nn0p1nn 11683 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ) |
63 | 50, 62 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℕ) |
64 | | nnuz 12029 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
65 | 63, 64 | syl6eleq 2869 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
66 | 65 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
67 | | poimir.0 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℕ) |
68 | 67 | nncnd 11392 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℂ) |
69 | | npcan1 10800 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
71 | 70 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
72 | | elfzuz3 12656 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑦)) |
73 | | peano2uz 12047 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
75 | 74 | adantl 475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
76 | 71, 75 | eqeltrrd 2860 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝑦)) |
77 | | fzsplit2 12683 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑦)) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
78 | 66, 76, 77 | syl2anc 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
79 | 78 | imaeq2d 5720 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = ((2nd ‘(1st
‘𝑇)) “
((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))) |
80 | | f1ofo 6398 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁)) |
81 | | foima 6371 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
82 | 44, 80, 81 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
83 | 82 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
84 | 79, 83 | eqtr3d 2816 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
85 | 61, 84 | syl5eqr 2828 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
86 | 85 | fneq2d 6227 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ↔ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
87 | 60, 86 | mpbid 224 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
88 | | ovexd 6956 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V) |
89 | | inidm 4043 |
. . . . . 6
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
90 | | eqidd 2779 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) = ((1st ‘(1st
‘𝑇))‘𝑛)) |
91 | | eqidd 2779 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
92 | 31, 87, 88, 88, 89, 90, 91 | offval 7181 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
93 | | elmapi 8162 |
. . . . . . . . . . . . 13
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
94 | 28, 93 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
95 | 94 | ffvelrnda 6623 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾)) |
96 | | elfzonn0 12832 |
. . . . . . . . . . 11
⊢
(((1st ‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
97 | 95, 96 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
98 | 97 | nn0cnd 11704 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
99 | 98 | adantlr 705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
100 | | ax-1cn 10330 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
101 | | 0cn 10368 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
102 | 100, 101 | ifcli 4353 |
. . . . . . . . 9
⊢ if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) ∈ ℂ |
103 | 102 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0) ∈
ℂ) |
104 | | snssi 4570 |
. . . . . . . . . . 11
⊢ (1 ∈
ℂ → {1} ⊆ ℂ) |
105 | 100, 104 | ax-mp 5 |
. . . . . . . . . 10
⊢ {1}
⊆ ℂ |
106 | | snssi 4570 |
. . . . . . . . . . 11
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
107 | 101, 106 | ax-mp 5 |
. . . . . . . . . 10
⊢ {0}
⊆ ℂ |
108 | 105, 107 | unssi 4011 |
. . . . . . . . 9
⊢ ({1}
∪ {0}) ⊆ ℂ |
109 | 32 | fconst 6341 |
. . . . . . . . . . . . 13
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1}):(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 +
1)))⟶{1} |
110 | 35 | fconst 6341 |
. . . . . . . . . . . . 13
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))⟶{0} |
111 | 109, 110 | pm3.2i 464 |
. . . . . . . . . . . 12
⊢
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1}):(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))⟶{1} ∧
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))⟶{0}) |
112 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → 𝑛 ∈ ((1 + 1)...𝑁)) |
113 | 67 | nnzd 11833 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑁 ∈ ℤ) |
114 | | 1z 11759 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℤ |
115 | | peano2z 11770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 ∈
ℤ → (1 + 1) ∈ ℤ) |
116 | 114, 115 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (1 + 1)
∈ ℤ |
117 | 113, 116 | jctil 515 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1 + 1) ∈ ℤ
∧ 𝑁 ∈
ℤ)) |
118 | | elfzelz 12659 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℤ) |
119 | 118, 114 | jctir 516 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
120 | | fzsubel 12694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((1 +
1) ∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
121 | 117, 119,
120 | syl2an 589 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
122 | 112, 121 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1))) |
123 | 100, 100 | pncan3oi 10639 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1 + 1)
− 1) = 1 |
124 | 123 | oveq1i 6932 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((1 + 1)
− 1)...(𝑁 − 1))
= (1...(𝑁 −
1)) |
125 | 122, 124 | syl6eleq 2869 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (1...(𝑁 − 1))) |
126 | 125 | ralrimiva 3148 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1))) |
127 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → 𝑦 ∈ (1...(𝑁 − 1))) |
128 | | peano2zm 11772 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
129 | 113, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
130 | 129, 114 | jctil 515 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1 ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ)) |
131 | | elfzelz 12659 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
132 | 131, 114 | jctir 516 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → (𝑦 ∈ ℤ ∧ 1 ∈
ℤ)) |
133 | | fzaddel 12692 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((1
∈ ℤ ∧ (𝑁
− 1) ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑦 ∈
(1...(𝑁 − 1)) ↔
(𝑦 + 1) ∈ ((1 +
1)...((𝑁 − 1) +
1)))) |
134 | 130, 132,
133 | syl2an 589 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 ∈ (1...(𝑁 − 1)) ↔ (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))) |
135 | 127, 134 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))) |
136 | 70 | oveq2d 6938 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
137 | 136 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
138 | 135, 137 | eleqtrd 2861 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...𝑁)) |
139 | 118 | zcnd 11835 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℂ) |
140 | 131 | zcnd 11835 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℂ) |
141 | | subadd2 10626 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝑦 ∈
ℂ) → ((𝑛 −
1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
142 | 100, 141 | mp3an2 1522 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑛 − 1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
143 | | eqcom 2785 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = (𝑛 − 1) ↔ (𝑛 − 1) = 𝑦) |
144 | | eqcom 2785 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = (𝑦 + 1) ↔ (𝑦 + 1) = 𝑛) |
145 | 142, 143,
144 | 3bitr4g 306 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
146 | 139, 140,
145 | syl2anr 590 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ (1...(𝑁 − 1)) ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
147 | 146 | ralrimiva 3148 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
148 | 147 | adantl 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
149 | | reu6i 3609 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
150 | 138, 148,
149 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
151 | 150 | ralrimiva 3148 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
152 | | eqid 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
153 | 152 | f1ompt 6645 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ↔ (∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))) |
154 | 126, 151,
153 | sylanbrc 578 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1))) |
155 | | f1osng 6431 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ V ∧ 𝑁 ∈
ℕ) → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
156 | 32, 67, 155 | sylancr 581 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
157 | 67 | nnred 11391 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ ℝ) |
158 | 157 | ltm1d 11310 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
159 | 129 | zred 11834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
160 | 159, 157 | ltnled 10523 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
161 | 158, 160 | mpbid 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
162 | | elfzle2 12662 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
163 | 161, 162 | nsyl 138 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
164 | | disjsn 4478 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(1...(𝑁 −
1))) |
165 | 163, 164 | sylibr 226 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
166 | | 1re 10376 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℝ |
167 | 166 | ltp1i 11281 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 < (1
+ 1) |
168 | 116 | zrei 11734 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1)
∈ ℝ |
169 | 166, 168 | ltnlei 10497 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 <
(1 + 1) ↔ ¬ (1 + 1) ≤ 1) |
170 | 167, 169 | mpbi 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ¬ (1
+ 1) ≤ 1 |
171 | | elfzle1 12661 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 ∈
((1 + 1)...𝑁) → (1 +
1) ≤ 1) |
172 | 170, 171 | mto 189 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬ 1
∈ ((1 + 1)...𝑁) |
173 | | disjsn 4478 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((1 +
1)...𝑁) ∩ {1}) =
∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁)) |
174 | 172, 173 | mpbir 223 |
. . . . . . . . . . . . . . . . . 18
⊢ (((1 +
1)...𝑁) ∩ {1}) =
∅ |
175 | | f1oun 6410 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((((1 + 1)...𝑁) ∩ {1}) = ∅ ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
176 | 174, 175 | mpanr1 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
177 | 154, 156,
165, 176 | syl21anc 828 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
178 | | eleq1 2847 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 1 → (𝑛 ∈ ((1 + 1)...𝑁) ↔ 1 ∈ ((1 + 1)...𝑁))) |
179 | 172, 178 | mtbiri 319 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 1 → ¬ 𝑛 ∈ ((1 + 1)...𝑁)) |
180 | 179 | necon2ai 2998 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ≠ 1) |
181 | | ifnefalse 4319 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ≠ 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
182 | 180, 181 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
183 | 182 | mpteq2ia 4975 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
184 | 183 | uneq1i 3986 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) |
185 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 1 ∈
V) |
186 | | ssv 3844 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℕ
⊆ V |
187 | 186, 67 | sseldi 3819 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ V) |
188 | 67, 64 | syl6eleq 2869 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
189 | | fzpred 12706 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
190 | 188, 189 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
191 | | uncom 3980 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({1}
∪ ((1 + 1)...𝑁)) = (((1
+ 1)...𝑁) ∪
{1}) |
192 | 190, 191 | syl6req 2831 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((1 + 1)...𝑁) ∪ {1}) = (1...𝑁)) |
193 | | iftrue 4313 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
194 | 193 | adantl 475 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 = 1) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
195 | 185, 187,
192, 194 | fmptapd 6704 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
196 | 184, 195 | syl5eqr 2828 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
197 | 70, 188 | eqeltrd 2859 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘1)) |
198 | | uzid 12007 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
199 | | peano2uz 12047 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
200 | 129, 198,
199 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
201 | 70, 200 | eqeltrrd 2860 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
202 | | fzsplit2 12683 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
203 | 197, 201,
202 | syl2anc 579 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
204 | 70 | oveq1d 6937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
205 | | fzsn 12700 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
206 | 113, 205 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
207 | 204, 206 | eqtrd 2814 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
208 | 207 | uneq2d 3990 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
209 | 203, 208 | eqtr2d 2815 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁)) |
210 | 196, 192,
209 | f1oeq123d 6386 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁))) |
211 | 177, 210 | mpbid 224 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) |
212 | | f1oco 6413 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
213 | 44, 211, 212 | syl2anc 579 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
214 | | dff1o3 6397 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁) ↔ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))))) |
215 | 214 | simprbi 492 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))) |
216 | | imain 6219 |
. . . . . . . . . . . . . 14
⊢ (Fun
◡((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))) |
217 | 213, 215,
216 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))) |
218 | 63 | nnred 11391 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℝ) |
219 | 218 | ltp1d 11308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) < ((𝑦 + 1) + 1)) |
220 | | fzdisj 12685 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
221 | 219, 220 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
222 | 221 | imaeq2d 5720 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “
∅)) |
223 | | ima0 5735 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ∅) =
∅ |
224 | 222, 223 | syl6eq 2830 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
225 | 217, 224 | sylan9req 2835 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
226 | | fun 6316 |
. . . . . . . . . . . 12
⊢
(((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1}):(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))⟶{1} ∧
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))⟶{0}) ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))⟶({1} ∪ {0})) |
227 | 111, 225,
226 | sylancr 581 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))⟶({1} ∪ {0})) |
228 | | imaundi 5799 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) |
229 | 63 | peano2nnd 11393 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℕ) |
230 | 229, 64 | syl6eleq 2869 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘1)) |
231 | 230 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘1)) |
232 | | eluzp1p1 12018 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
233 | 72, 232 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
234 | 233 | adantl 475 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
235 | 71, 234 | eqeltrrd 2860 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) |
236 | | fzsplit2 12683 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 + 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
237 | 231, 235,
236 | syl2anc 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
238 | 237 | imaeq2d 5720 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))) |
239 | | f1ofo 6398 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–onto→(1...𝑁)) |
240 | | foima 6371 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–onto→(1...𝑁) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑁)) = (1...𝑁)) |
241 | 213, 239,
240 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑁)) = (1...𝑁)) |
242 | 241 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑁)) = (1...𝑁)) |
243 | 238, 242 | eqtr3d 2816 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁)) |
244 | 228, 243 | syl5eqr 2828 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁)) |
245 | 244 | feq2d 6277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))⟶({1} ∪ {0}) ↔
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))) |
246 | 227, 245 | mpbid 224 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})) |
247 | 246 | ffvelrnda 6623 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) ∈ ({1} ∪ {0})) |
248 | 108, 247 | sseldi 3819 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) ∈ ℂ) |
249 | 99, 103, 248 | subadd23d 10756 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) = (((1st ‘(1st
‘𝑇))‘𝑛) + (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
250 | | oveq2 6930 |
. . . . . . . . . 10
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
251 | 250 | eqeq1d 2780 |
. . . . . . . . 9
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ↔ (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
252 | | oveq2 6930 |
. . . . . . . . . 10
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
253 | 252 | eqeq1d 2780 |
. . . . . . . . 9
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ↔ (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
254 | | 1m1e0 11447 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
255 | | f1ofn 6392 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
256 | 44, 255 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
257 | 256 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
258 | | imassrn 5731 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))) ⊆ ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) |
259 | | f1of 6391 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)⟶(1...𝑁)) |
260 | 211, 259 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)⟶(1...𝑁)) |
261 | 260 | frnd 6298 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ⊆ (1...𝑁)) |
262 | 258, 261 | syl5ss 3832 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))) ⊆ (1...𝑁)) |
263 | 262 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))) ⊆ (1...𝑁)) |
264 | | eqidd 2779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
265 | | eluzfz1 12665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) |
266 | 188, 265 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ∈ (1...𝑁)) |
267 | 264, 194,
266, 67 | fvmptd 6548 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1) = 𝑁) |
268 | 267 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1) = 𝑁) |
269 | | f1ofn 6392 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁)) |
270 | 211, 269 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁)) |
271 | 270 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁)) |
272 | | fzss2 12698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → (1...(𝑦 + 1)) ⊆ (1...𝑁)) |
273 | 235, 272 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑦 + 1)) ⊆ (1...𝑁)) |
274 | | eluzfz1 12665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑦 + 1))) |
275 | 65, 274 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 ∈ (1...(𝑦 + 1))) |
276 | 275 | adantl 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 1 ∈ (1...(𝑦 + 1))) |
277 | | fnfvima 6769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁) ∧ (1...(𝑦 + 1)) ⊆ (1...𝑁) ∧ 1 ∈ (1...(𝑦 + 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1) ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) |
278 | 271, 273,
276, 277 | syl3anc 1439 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1) ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) |
279 | 268, 278 | eqeltrrd 2860 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) |
280 | | fnfvima 6769 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))))) |
281 | 257, 263,
279, 280 | syl3anc 1439 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))))) |
282 | | imaco 5894 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) |
283 | 281, 282 | syl6eleqr 2870 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))) |
284 | | fnconstg 6343 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) Fn
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))) |
285 | 32, 284 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) Fn
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) |
286 | | fnconstg 6343 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) |
287 | 35, 286 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) |
288 | | fvun1 6529 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) Fn
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) ∧ (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))))) →
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁))) |
289 | 285, 287,
288 | mp3an12 1524 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))) →
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁))) |
290 | 225, 283,
289 | syl2anc 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁))) |
291 | 32 | fvconst2 6741 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇))‘𝑁) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) →
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁)) = 1) |
292 | 283, 291 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁)) = 1) |
293 | 290, 292 | eqtrd 2814 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 1) |
294 | 293 | oveq1d 6937 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) = (1 −
1)) |
295 | | fzss1 12697 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
296 | 65, 295 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
297 | 296 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
298 | | eluzfz2 12666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
299 | 235, 298 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
300 | | fnfvima 6769 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ ((𝑦 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑦 + 1)...𝑁)) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
301 | 257, 297,
299, 300 | syl3anc 1439 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
302 | | fvun2 6530 |
. . . . . . . . . . . . . . . 16
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) ∧ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
303 | 34, 37, 302 | mp3an12 1524 |
. . . . . . . . . . . . . . 15
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
304 | 58, 301, 303 | syl2anc 579 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
305 | 35 | fvconst2 6741 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
306 | 301, 305 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
307 | 304, 306 | eqtrd 2814 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
308 | 254, 294,
307 | 3eqtr4a 2840 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
309 | | fveq2 6446 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
310 | 309 | oveq1d 6937 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1)) |
311 | | fveq2 6446 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
312 | 310, 311 | eqeq12d 2793 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ↔ (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)))) |
313 | 308, 312 | syl5ibrcom 239 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
314 | 313 | imp 397 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
315 | 314 | adantlr 705 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
316 | 248 | subid1d 10723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
317 | 316 | adantr 474 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
318 | | eldifsn 4550 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ↔ (𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st
‘𝑇))‘𝑁))) |
319 | | df-ne 2970 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ≠ ((2nd
‘(1st ‘𝑇))‘𝑁) ↔ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) |
320 | 319 | anbi2i 616 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st
‘𝑇))‘𝑁)) ↔ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁))) |
321 | 318, 320 | bitri 267 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ↔ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁))) |
322 | | fnconstg 6343 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → (((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) Fn
((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
323 | 35, 322 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) Fn
((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) |
324 | 34, 323 | pm3.2i 464 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) Fn
((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
325 | | imain 6219 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))))) |
326 | 47, 325 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))))) |
327 | | fzdisj 12685 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1))) = ∅) |
328 | 52, 327 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1))) = ∅) |
329 | 328 | imaeq2d 5720 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1)))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
330 | 329, 56 | syl6eq 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1)))) = ∅) |
331 | 326, 330 | sylan9req 2835 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) = ∅) |
332 | | fnun 6243 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) Fn
((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) ∧ (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) = ∅) →
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))))) |
333 | 324, 331,
332 | sylancr 581 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))))) |
334 | | imaundi 5799 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
335 | 203, 208 | eqtrd 2814 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
336 | 335 | difeq1d 3950 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ {𝑁})) |
337 | | difun2 4272 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...(𝑁 −
1)) ∪ {𝑁}) ∖
{𝑁}) = ((1...(𝑁 − 1)) ∖ {𝑁}) |
338 | 336, 337 | syl6eq 2830 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = ((1...(𝑁 − 1)) ∖ {𝑁})) |
339 | | difsn 4560 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑁 ∈ (1...(𝑁 − 1)) → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1))) |
340 | 163, 339 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1))) |
341 | 338, 340 | eqtrd 2814 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
342 | 341 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
343 | 72 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑦)) |
344 | | fzsplit2 12683 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 + 1) ∈
(ℤ≥‘1) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑦)) → (1...(𝑁 − 1)) = ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) |
345 | 66, 343, 344 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑁 − 1)) = ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) |
346 | 342, 345 | eqtrd 2814 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1...𝑁) ∖ {𝑁}) = ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) |
347 | 346 | imaeq2d 5720 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1))))) |
348 | | imadif 6218 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {𝑁}))) |
349 | 47, 348 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {𝑁}))) |
350 | | elfz1end 12688 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) |
351 | 67, 350 | sylib 210 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
352 | | fnsnfv 6518 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ {𝑁})) |
353 | 256, 351,
352 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ {𝑁})) |
354 | 353 | eqcomd 2784 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ {𝑁}) = {((2nd
‘(1st ‘𝑇))‘𝑁)}) |
355 | 82, 354 | difeq12d 3952 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {𝑁})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
356 | 349, 355 | eqtrd 2814 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
357 | 356 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
358 | 347, 357 | eqtr3d 2816 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
359 | 334, 358 | syl5eqr 2828 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
360 | 359 | fneq2d 6227 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) ↔ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) |
361 | 333, 360 | mpbid 224 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
362 | | incom 4028 |
. . . . . . . . . . . . . . . 16
⊢
(((1...𝑁) ∖
{((2nd ‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ({((2nd
‘(1st ‘𝑇))‘𝑁)} ∩ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
363 | | disjdif 4264 |
. . . . . . . . . . . . . . . 16
⊢
({((2nd ‘(1st ‘𝑇))‘𝑁)} ∩ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) = ∅ |
364 | 362, 363 | eqtri 2802 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑁) ∖
{((2nd ‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ |
365 | | fnconstg 6343 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → ({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)}) |
366 | 32, 365 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)} |
367 | | fvun1 6529 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)} ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}))‘𝑛)) |
368 | 366, 367 | mp3an2 1522 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}))‘𝑛)) |
369 | | fnconstg 6343 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → ({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)}) |
370 | 35, 369 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)} |
371 | | fvun1 6529 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {0}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)} ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}))‘𝑛)) |
372 | 370, 371 | mp3an2 1522 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}))‘𝑛)) |
373 | 368, 372 | eqtr4d 2817 |
. . . . . . . . . . . . . . 15
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
374 | 364, 373 | mpanr1 693 |
. . . . . . . . . . . . . 14
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
375 | 361, 374 | sylan 575 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
376 | 321, 375 | sylan2br 588 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
377 | 376 | anassrs 461 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
378 | | imaundi 5799 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((1 + 1)...(𝑦 + 1)) ∪ {1})) =
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1 + 1)...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ {1})) |
379 | | imaco 5894 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1 + 1)...(𝑦 + 1))) = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) |
380 | | imaco 5894 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ {1}) =
((2nd ‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1})) |
381 | 379, 380 | uneq12i 3988 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1 + 1)...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ {1})) =
(((2nd ‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
382 | 378, 381 | eqtri 2802 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((1 + 1)...(𝑦 + 1)) ∪ {1})) =
(((2nd ‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
383 | | fzpred 12706 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → (1...(𝑦 + 1)) = ({1} ∪ ((1 + 1)...(𝑦 + 1)))) |
384 | 65, 383 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...(𝑦 + 1)) = ({1} ∪ ((1 + 1)...(𝑦 + 1)))) |
385 | | uncom 3980 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({1}
∪ ((1 + 1)...(𝑦 + 1)))
= (((1 + 1)...(𝑦 + 1))
∪ {1}) |
386 | 384, 385 | syl6eq 2830 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...(𝑦 + 1)) = (((1 + 1)...(𝑦 + 1)) ∪ {1})) |
387 | 386 | imaeq2d 5720 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((1 + 1)...(𝑦 + 1)) ∪
{1}))) |
388 | 387 | adantl 475 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((1 + 1)...(𝑦 + 1)) ∪
{1}))) |
389 | | elfzelz 12659 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
390 | 123 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℤ → ((1 + 1)
− 1) = 1) |
391 | | zcn 11733 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
392 | | pncan1 10799 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) − 1) = 𝑦) |
393 | 391, 392 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℤ → ((𝑦 + 1) − 1) = 𝑦) |
394 | 390, 393 | oveq12d 6940 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℤ → (((1 + 1)
− 1)...((𝑦 + 1)
− 1)) = (1...𝑦)) |
395 | | elfzelz 12659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ 𝑗 ∈
ℤ) |
396 | 395 | zcnd 11835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ 𝑗 ∈
ℂ) |
397 | | pncan1 10799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ ℂ → ((𝑗 + 1) − 1) = 𝑗) |
398 | 396, 397 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ ((𝑗 + 1) − 1)
= 𝑗) |
399 | 398 | eleq1d 2844 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ (((𝑗 + 1) − 1)
∈ (((1 + 1) − 1)...((𝑦 + 1) − 1)) ↔ 𝑗 ∈ (((1 + 1) − 1)...((𝑦 + 1) −
1)))) |
400 | 399 | ibir 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ ((𝑗 + 1) − 1)
∈ (((1 + 1) − 1)...((𝑦 + 1) − 1))) |
401 | 400 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ ((𝑗 + 1) − 1)
∈ (((1 + 1) − 1)...((𝑦 + 1) − 1))) |
402 | | peano2z 11770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ ℤ → (𝑦 + 1) ∈
ℤ) |
403 | 402, 116 | jctil 515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ ℤ → ((1 + 1)
∈ ℤ ∧ (𝑦 +
1) ∈ ℤ)) |
404 | 395 | peano2zd 11837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ (𝑗 + 1) ∈
ℤ) |
405 | 404, 114 | jctir 516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ ((𝑗 + 1) ∈
ℤ ∧ 1 ∈ ℤ)) |
406 | | fzsubel 12694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((1 +
1) ∈ ℤ ∧ (𝑦
+ 1) ∈ ℤ) ∧ ((𝑗 + 1) ∈ ℤ ∧ 1 ∈ ℤ))
→ ((𝑗 + 1) ∈ ((1
+ 1)...(𝑦 + 1)) ↔
((𝑗 + 1) − 1) ∈
(((1 + 1) − 1)...((𝑦
+ 1) − 1)))) |
407 | 403, 405,
406 | syl2an 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ ((𝑗 + 1) ∈ ((1
+ 1)...(𝑦 + 1)) ↔
((𝑗 + 1) − 1) ∈
(((1 + 1) − 1)...((𝑦
+ 1) − 1)))) |
408 | 401, 407 | mpbird 249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ (𝑗 + 1) ∈ ((1 +
1)...(𝑦 +
1))) |
409 | 398 | eqcomd 2784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ 𝑗 = ((𝑗 + 1) −
1)) |
410 | 409 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ 𝑗 = ((𝑗 + 1) −
1)) |
411 | | oveq1 6929 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = (𝑗 + 1) → (𝑛 − 1) = ((𝑗 + 1) − 1)) |
412 | 411 | rspceeqv 3529 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑗 + 1) ∈ ((1 + 1)...(𝑦 + 1)) ∧ 𝑗 = ((𝑗 + 1) − 1)) → ∃𝑛 ∈ ((1 + 1)...(𝑦 + 1))𝑗 = (𝑛 − 1)) |
413 | 408, 410,
412 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ ∃𝑛 ∈ ((1
+ 1)...(𝑦 + 1))𝑗 = (𝑛 − 1)) |
414 | 413 | ex 403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℤ → (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ ∃𝑛 ∈ ((1
+ 1)...(𝑦 + 1))𝑗 = (𝑛 − 1))) |
415 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) → 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) |
416 | | elfzelz 12659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) → 𝑛 ∈ ℤ) |
417 | 416, 114 | jctir 516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
418 | | fzsubel 12694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((1 +
1) ∈ ℤ ∧ (𝑦
+ 1) ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑛 ∈ ((1 +
1)...(𝑦 + 1)) ↔ (𝑛 − 1) ∈ (((1 + 1)
− 1)...((𝑦 + 1)
− 1)))) |
419 | 403, 417,
418 | syl2an 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) → (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↔ (𝑛 − 1) ∈ (((1 + 1)
− 1)...((𝑦 + 1)
− 1)))) |
420 | 415, 419 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) → (𝑛 − 1) ∈ (((1 + 1)
− 1)...((𝑦 + 1)
− 1))) |
421 | | eleq1 2847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = (𝑛 − 1) → (𝑗 ∈ (((1 + 1) − 1)...((𝑦 + 1) − 1)) ↔ (𝑛 − 1) ∈ (((1 + 1)
− 1)...((𝑦 + 1)
− 1)))) |
422 | 420, 421 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) → (𝑗 = (𝑛 − 1) → 𝑗 ∈ (((1 + 1) − 1)...((𝑦 + 1) −
1)))) |
423 | 422 | rexlimdva 3213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℤ →
(∃𝑛 ∈ ((1 +
1)...(𝑦 + 1))𝑗 = (𝑛 − 1) → 𝑗 ∈ (((1 + 1) − 1)...((𝑦 + 1) −
1)))) |
424 | 414, 423 | impbid 204 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℤ → (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
↔ ∃𝑛 ∈ ((1
+ 1)...(𝑦 + 1))𝑗 = (𝑛 − 1))) |
425 | | vex 3401 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑗 ∈ V |
426 | | eqid 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) = (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) |
427 | 426 | elrnmpt 5618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ V → (𝑗 ∈ ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) ↔ ∃𝑛 ∈ ((1 + 1)...(𝑦 + 1))𝑗 = (𝑛 − 1))) |
428 | 425, 427 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) ↔ ∃𝑛 ∈ ((1 + 1)...(𝑦 + 1))𝑗 = (𝑛 − 1)) |
429 | 424, 428 | syl6bbr 281 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℤ → (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
↔ 𝑗 ∈ ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)))) |
430 | 429 | eqrdv 2776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℤ → (((1 + 1)
− 1)...((𝑦 + 1)
− 1)) = ran (𝑛 ∈
((1 + 1)...(𝑦 + 1)) ↦
(𝑛 −
1))) |
431 | 394, 430 | eqtr3d 2816 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℤ →
(1...𝑦) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
432 | 389, 431 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...𝑦) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
433 | 432 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑦) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
434 | | df-ima 5368 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1))) = ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ ((1 + 1)...(𝑦 + 1))) |
435 | | uzid 12007 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 ∈
ℤ → 1 ∈ (ℤ≥‘1)) |
436 | | peano2uz 12047 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 ∈
(ℤ≥‘1) → (1 + 1) ∈
(ℤ≥‘1)) |
437 | 114, 435,
436 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (1 + 1)
∈ (ℤ≥‘1) |
438 | | fzss1 12697 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((1 + 1)
∈ (ℤ≥‘1) → ((1 + 1)...(𝑦 + 1)) ⊆ (1...(𝑦 + 1))) |
439 | 437, 438 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((1 +
1)...(𝑦 + 1)) ⊆
(1...(𝑦 +
1)) |
440 | 439, 273 | syl5ss 3832 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1 + 1)...(𝑦 + 1)) ⊆ (1...𝑁)) |
441 | 440 | resmptd 5702 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ ((1 + 1)...(𝑦 + 1))) = (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
442 | | elfzle1 12661 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (1 ∈
((1 + 1)...(𝑦 + 1)) →
(1 + 1) ≤ 1) |
443 | 170, 442 | mto 189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ¬ 1
∈ ((1 + 1)...(𝑦 +
1)) |
444 | | eleq1 2847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 1 → (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↔ 1 ∈ ((1 + 1)...(𝑦 + 1)))) |
445 | 443, 444 | mtbiri 319 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 1 → ¬ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) |
446 | 445 | necon2ai 2998 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) → 𝑛 ≠ 1) |
447 | 446, 181 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
448 | 447 | mpteq2ia 4975 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) |
449 | 441, 448 | syl6eq 2830 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ ((1 + 1)...(𝑦 + 1))) = (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
450 | 449 | rneqd 5598 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ ((1 + 1)...(𝑦 + 1))) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
451 | 434, 450 | syl5eq 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1))) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
452 | 433, 451 | eqtr4d 2817 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑦) = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) |
453 | 452 | imaeq2d 5720 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1))))) |
454 | 267 | sneqd 4410 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1)} = {𝑁}) |
455 | | fnsnfv 6518 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁) ∧ 1 ∈ (1...𝑁)) → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1)} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1})) |
456 | 270, 266,
455 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1)} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1})) |
457 | 454, 456 | eqtr3d 2816 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑁} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1})) |
458 | 457 | imaeq2d 5720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ {𝑁}) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
459 | 353, 458 | eqtrd 2814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
460 | 459 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
461 | 453, 460 | uneq12d 3991 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “
{1})))) |
462 | 382, 388,
461 | 3eqtr4a 2840 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
463 | 462 | xpeq1d 5384 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) =
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) × {1})) |
464 | | xpundir 5418 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) × {1}) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1})) |
465 | 463, 464 | syl6eq 2830 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) =
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1}))) |
466 | | imaco 5894 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁))) |
467 | | df-ima 5368 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁)) = ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ (((𝑦 + 1) + 1)...𝑁)) |
468 | | fzss1 12697 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 + 1) + 1) ∈
(ℤ≥‘1) → (((𝑦 + 1) + 1)...𝑁) ⊆ (1...𝑁)) |
469 | 231, 468 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1)...𝑁) ⊆ (1...𝑁)) |
470 | 469 | resmptd 5702 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ (((𝑦 + 1) + 1)...𝑁)) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
471 | | 1red 10377 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 ∈
ℝ) |
472 | 63 | nnzd 11833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℤ) |
473 | 472 | peano2zd 11837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℤ) |
474 | 473 | zred 11834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℝ) |
475 | 63 | nnge1d 11423 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 ≤ (𝑦 + 1)) |
476 | 471, 218,
474, 475, 219 | lelttrd 10534 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 < ((𝑦 + 1) + 1)) |
477 | 471, 474 | ltnled 10523 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1 < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤
1)) |
478 | 476, 477 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ¬ ((𝑦 + 1) + 1) ≤
1) |
479 | | elfzle1 12661 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (1 ∈
(((𝑦 + 1) + 1)...𝑁) → ((𝑦 + 1) + 1) ≤ 1) |
480 | 478, 479 | nsyl 138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ¬ 1 ∈ (((𝑦 + 1) + 1)...𝑁)) |
481 | | eleq1 2847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 1 → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↔ 1 ∈ (((𝑦 + 1) + 1)...𝑁))) |
482 | 481 | notbid 310 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 1 → (¬ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↔ ¬ 1 ∈ (((𝑦 + 1) + 1)...𝑁))) |
483 | 480, 482 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑛 = 1 → ¬ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁))) |
484 | 483 | necon2ad 2984 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) → 𝑛 ≠ 1)) |
485 | 484 | imp 397 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ (0...(𝑁 − 1)) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → 𝑛 ≠ 1) |
486 | 485, 181 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ (0...(𝑁 − 1)) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
487 | 486 | mpteq2dva 4979 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
488 | 487 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
489 | 470, 488 | eqtrd 2814 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ (((𝑦 + 1) + 1)...𝑁)) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
490 | 489 | rneqd 5598 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ (((𝑦 + 1) + 1)...𝑁)) = ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
491 | 467, 490 | syl5eq 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁)) = ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
492 | | eqid 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) |
493 | 492 | elrnmpt 5618 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ V → (𝑗 ∈ ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) ↔ ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1))) |
494 | 425, 493 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) ↔ ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1)) |
495 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) |
496 | 113, 473 | anim12ci 607 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1) ∈ ℤ ∧ 𝑁 ∈
ℤ)) |
497 | | elfzelz 12659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) → 𝑛 ∈ ℤ) |
498 | 497, 114 | jctir 516 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
499 | | fzsubel 12694 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑦 + 1) + 1)
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↔ (𝑛 − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
500 | 496, 498,
499 | syl2an 589 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↔ (𝑛 − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
501 | 495, 500 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → (𝑛 − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) |
502 | | eleq1 2847 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = (𝑛 − 1) → (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) ↔ (𝑛 − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
503 | 501, 502 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → (𝑗 = (𝑛 − 1) → 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
504 | 503 | rexlimdva 3213 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1) → 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
505 | | elfzelz 12659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → 𝑗 ∈ ℤ) |
506 | 505 | zcnd 11835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → 𝑗 ∈ ℂ) |
507 | 506, 397 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → ((𝑗 + 1) − 1) = 𝑗) |
508 | 507 | eleq1d 2844 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → (((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) ↔ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
509 | 508 | ibir 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → ((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) |
510 | 509 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → ((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) |
511 | 505 | peano2zd 11837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → (𝑗 + 1) ∈ ℤ) |
512 | 511, 114 | jctir 516 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → ((𝑗 + 1) ∈ ℤ ∧ 1 ∈
ℤ)) |
513 | | fzsubel 12694 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑦 + 1) + 1)
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ ((𝑗 +
1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑗 + 1) ∈ (((𝑦 + 1) + 1)...𝑁) ↔ ((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
514 | 496, 512,
513 | syl2an 589 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → ((𝑗 + 1) ∈ (((𝑦 + 1) + 1)...𝑁) ↔ ((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
515 | 510, 514 | mpbird 249 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → (𝑗 + 1) ∈ (((𝑦 + 1) + 1)...𝑁)) |
516 | 507 | eqcomd 2784 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → 𝑗 = ((𝑗 + 1) − 1)) |
517 | 516 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → 𝑗 = ((𝑗 + 1) − 1)) |
518 | 411 | rspceeqv 3529 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑗 + 1) ∈ (((𝑦 + 1) + 1)...𝑁) ∧ 𝑗 = ((𝑗 + 1) − 1)) → ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1)) |
519 | 515, 517,
518 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1)) |
520 | 519 | ex 403 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1))) |
521 | 504, 520 | impbid 204 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1) ↔ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
522 | 494, 521 | syl5bb 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) ↔ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
523 | 522 | eqrdv 2776 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) = ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) |
524 | 63 | nncnd 11392 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℂ) |
525 | | pncan1 10799 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) ∈ ℂ →
(((𝑦 + 1) + 1) − 1) =
(𝑦 + 1)) |
526 | 524, 525 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((𝑦 + 1) + 1) − 1) = (𝑦 + 1)) |
527 | 526 | oveq1d 6937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) = ((𝑦 + 1)...(𝑁 − 1))) |
528 | 527 | adantl 475 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) = ((𝑦 + 1)...(𝑁 − 1))) |
529 | 491, 523,
528 | 3eqtrd 2818 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁)) = ((𝑦 + 1)...(𝑁 − 1))) |
530 | 529 | imaeq2d 5720 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
531 | 466, 530 | syl5eq 2826 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
532 | 531 | xpeq1d 5384 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) |
533 | 465, 532 | uneq12d 3991 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1})) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ×
{0}))) |
534 | | un23 3995 |
. . . . . . . . . . . . . 14
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1})) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) =
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1})) |
535 | 533, 534 | syl6eq 2830 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))) |
536 | 535 | fveq1d 6448 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛)) |
537 | 536 | ad2antrr 716 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛)) |
538 | | imaundi 5799 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ {𝑁})) |
539 | | fzsplit2 12683 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
540 | 233, 201,
539 | syl2anr 590 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
541 | 207 | uneq2d 3990 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
542 | 541 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
543 | 540, 542 | eqtrd 2814 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
544 | 543 | imaeq2d 5720 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁}))) |
545 | 353 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ {𝑁})) |
546 | 545 | uneq2d 3990 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ {𝑁}))) |
547 | 538, 544,
546 | 3eqtr4a 2840 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
548 | 547 | xpeq1d 5384 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) × {0})) |
549 | | xpundir 5418 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) × {0}) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0})) |
550 | 548, 549 | syl6eq 2830 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))) |
551 | 550 | uneq2d 3990 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0})))) |
552 | | unass 3993 |
. . . . . . . . . . . . . 14
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))) |
553 | 551, 552 | syl6eqr 2832 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))) |
554 | 553 | fveq1d 6448 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
555 | 554 | ad2antrr 716 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
556 | 377, 537,
555 | 3eqtr4d 2824 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
557 | 317, 556 | eqtrd 2814 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
558 | 251, 253,
315, 557 | ifbothda 4344 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
559 | 558 | oveq2d 6938 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) = (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
560 | 249, 559 | eqtr2d 2815 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛))) |
561 | 560 | mpteq2dva 4979 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)))) |
562 | 92, 561 | eqtrd 2814 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)))) |
563 | 51 | adantl 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ) |
564 | 159 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ) |
565 | 157 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
566 | | elfzle2 12662 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1)) |
567 | 566 | adantl 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1)) |
568 | 158 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁) |
569 | 563, 564,
565, 567, 568 | lelttrd 10534 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁) |
570 | | poimirlem21.4 |
. . . . . . . . 9
⊢ (𝜑 → (2nd
‘𝑇) = 𝑁) |
571 | 570 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘𝑇) = 𝑁) |
572 | 569, 571 | breqtrrd 4914 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd ‘𝑇)) |
573 | 572 | iftrued 4315 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) = 𝑦) |
574 | 573 | csbeq1d 3758 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
575 | | vex 3401 |
. . . . . 6
⊢ 𝑦 ∈ V |
576 | | oveq2 6930 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦)) |
577 | 576 | imaeq2d 5720 |
. . . . . . . . 9
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑦))) |
578 | 577 | xpeq1d 5384 |
. . . . . . . 8
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1})) |
579 | | oveq1 6929 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1)) |
580 | 579 | oveq1d 6937 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁)) |
581 | 580 | imaeq2d 5720 |
. . . . . . . . 9
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
582 | 581 | xpeq1d 5384 |
. . . . . . . 8
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) |
583 | 578, 582 | uneq12d 3991 |
. . . . . . 7
⊢ (𝑗 = 𝑦 → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
584 | 583 | oveq2d 6938 |
. . . . . 6
⊢ (𝑗 = 𝑦 → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
585 | 575, 584 | csbie 3777 |
. . . . 5
⊢
⦋𝑦 /
𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
586 | 574, 585 | syl6eq 2830 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
587 | | ovexd 6956 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈
V) |
588 | | fvexd 6461 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) ∈ V) |
589 | | eqidd 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
590 | 246 | ffnd 6292 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
591 | | nfcv 2934 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(2nd ‘(1st
‘𝑇)) |
592 | | nfmpt1 4982 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) |
593 | 591, 592 | nfco 5533 |
. . . . . . . . . 10
⊢
Ⅎ𝑛((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
594 | | nfcv 2934 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(1...(𝑦 + 1)) |
595 | 593, 594 | nfima 5728 |
. . . . . . . . 9
⊢
Ⅎ𝑛(((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) |
596 | | nfcv 2934 |
. . . . . . . . 9
⊢
Ⅎ𝑛{1} |
597 | 595, 596 | nfxp 5388 |
. . . . . . . 8
⊢
Ⅎ𝑛((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1}) |
598 | | nfcv 2934 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(((𝑦 + 1) + 1)...𝑁) |
599 | 593, 598 | nfima 5728 |
. . . . . . . . 9
⊢
Ⅎ𝑛(((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) |
600 | | nfcv 2934 |
. . . . . . . . 9
⊢
Ⅎ𝑛{0} |
601 | 599, 600 | nfxp 5388 |
. . . . . . . 8
⊢
Ⅎ𝑛((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) |
602 | 597, 601 | nfun 3992 |
. . . . . . 7
⊢
Ⅎ𝑛(((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) |
603 | 602 | dffn5f 6512 |
. . . . . 6
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁) ↔ (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (𝑛 ∈ (1...𝑁) ↦ ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛))) |
604 | 590, 603 | sylib 210 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (𝑛 ∈ (1...𝑁) ↦ ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛))) |
605 | 88, 587, 588, 589, 604 | offval2 7191 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)))) |
606 | 562, 586,
605 | 3eqtr4rd 2825 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
607 | 606 | mpteq2dva 4979 |
. 2
⊢ (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
608 | 21, 607 | eqtr4d 2817 |
1
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))) |