Proof of Theorem poimirlem16
Step | Hyp | Ref
| Expression |
1 | | poimirlem22.2 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
2 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (2nd ‘𝑡) = (2nd ‘𝑇)) |
3 | 2 | breq2d 5082 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑇))) |
4 | 3 | ifbid 4479 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1))) |
5 | | 2fveq3 6761 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑇))) |
6 | | 2fveq3 6761 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑇))) |
7 | 6 | imaeq1d 5957 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑗))) |
8 | 7 | xpeq1d 5609 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1})) |
9 | 6 | imaeq1d 5957 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑗 + 1)...𝑁))) |
10 | 9 | xpeq1d 5609 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) |
11 | 8, 10 | uneq12d 4094 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
12 | 5, 11 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
13 | 4, 12 | csbeq12dv 3837 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
14 | 13 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
15 | 14 | eqeq2d 2749 |
. . . . 5
⊢ (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
16 | | poimirlem22.s |
. . . . 5
⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
17 | 15, 16 | elrab2 3620 |
. . . 4
⊢ (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
18 | 17 | simprbi 496 |
. . 3
⊢ (𝑇 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
19 | 1, 18 | syl 17 |
. 2
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
20 | | elrabi 3611 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
21 | 20, 16 | eleq2s 2857 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝑆 → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
22 | 1, 21 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
23 | | xp1st 7836 |
. . . . . . . . . 10
⊢ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝑇) ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
25 | | xp1st 7836 |
. . . . . . . . 9
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
26 | 24, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
27 | | elmapfn 8611 |
. . . . . . . 8
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
30 | | 1ex 10902 |
. . . . . . . . . 10
⊢ 1 ∈
V |
31 | | fnconstg 6646 |
. . . . . . . . . 10
⊢ (1 ∈
V → (((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1)))) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . . 9
⊢
(((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) |
33 | | c0ex 10900 |
. . . . . . . . . 10
⊢ 0 ∈
V |
34 | | fnconstg 6646 |
. . . . . . . . . 10
⊢ (0 ∈
V → (((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
35 | 33, 34 | ax-mp 5 |
. . . . . . . . 9
⊢
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) |
36 | 32, 35 | pm3.2i 470 |
. . . . . . . 8
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
37 | | xp2nd 7837 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
38 | 24, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
39 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢
(2nd ‘(1st ‘𝑇)) ∈ V |
40 | | f1oeq1 6688 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (2nd
‘(1st ‘𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))) |
41 | 39, 40 | elab 3602 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
42 | 38, 41 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
43 | | dff1o3 6706 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡(2nd ‘(1st
‘𝑇)))) |
44 | 43 | simprbi 496 |
. . . . . . . . . . 11
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡(2nd ‘(1st
‘𝑇))) |
45 | 42, 44 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Fun ◡(2nd ‘(1st
‘𝑇))) |
46 | | imain 6503 |
. . . . . . . . . 10
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
47 | 45, 46 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
48 | | elfznn0 13278 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0) |
49 | | nn0p1nn 12202 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℕ) |
51 | 50 | nnred 11918 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℝ) |
52 | 51 | ltp1d 11835 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) < ((𝑦 + 1) + 1)) |
53 | | fzdisj 13212 |
. . . . . . . . . . . 12
⊢ ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
54 | 52, 53 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
55 | 54 | imaeq2d 5958 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
56 | | ima0 5974 |
. . . . . . . . . 10
⊢
((2nd ‘(1st ‘𝑇)) “ ∅) =
∅ |
57 | 55, 56 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
58 | 47, 57 | sylan9req 2800 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
59 | | fnun 6529 |
. . . . . . . 8
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ∧ (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
60 | 36, 58, 59 | sylancr 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
61 | | imaundi 6042 |
. . . . . . . . 9
⊢
((2nd ‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
62 | | nnuz 12550 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
63 | 50, 62 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
64 | | peano2uz 12570 |
. . . . . . . . . . . . 13
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘1)) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘1)) |
66 | | poimir.0 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℕ) |
67 | 66 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℂ) |
68 | | npcan1 11330 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
70 | 69 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
71 | | elfzuz3 13182 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑦)) |
72 | | eluzp1p1 12539 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
74 | 73 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
75 | 70, 74 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) |
76 | | fzsplit2 13210 |
. . . . . . . . . . . 12
⊢ ((((𝑦 + 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
77 | 65, 75, 76 | syl2an2 682 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
78 | 77 | imaeq2d 5958 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = ((2nd ‘(1st
‘𝑇)) “
((1...(𝑦 + 1)) ∪
(((𝑦 + 1) + 1)...𝑁)))) |
79 | | f1ofo 6707 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁)) |
80 | | foima 6677 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
81 | 42, 79, 80 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
82 | 81 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
83 | 78, 82 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁)) |
84 | 61, 83 | eqtr3id 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁)) |
85 | 84 | fneq2d 6511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ↔ ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
86 | 60, 85 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
87 | | ovexd 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V) |
88 | | inidm 4149 |
. . . . . 6
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
89 | | eqidd 2739 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) = ((1st ‘(1st
‘𝑇))‘𝑛)) |
90 | | eqidd 2739 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
91 | 29, 86, 87, 87, 88, 89, 90 | offval 7520 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)))) |
92 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) → (1 +
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
93 | 92 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) →
((((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) ↔ (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
94 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) → (0 +
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
95 | 94 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) →
((((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (0 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) ↔ (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
96 | | 1p0e1 12027 |
. . . . . . . . . . . . . 14
⊢ (1 + 0) =
1 |
97 | 96 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ 1 = (1 +
0) |
98 | | f1ofn 6701 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
99 | 42, 98 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
100 | 99 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
101 | | fzss2 13225 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → (1...(𝑦 + 1)) ⊆ (1...𝑁)) |
102 | 75, 101 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑦 + 1)) ⊆ (1...𝑁)) |
103 | | eluzfz1 13192 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑦 + 1))) |
104 | 63, 103 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 ∈ (1...(𝑦 + 1))) |
105 | 104 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 1 ∈ (1...(𝑦 + 1))) |
106 | | fnfvima 7091 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ (1...(𝑦 + 1)) ⊆ (1...𝑁) ∧ 1 ∈ (1...(𝑦 + 1))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1)))) |
107 | 100, 102,
105, 106 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1)))) |
108 | | fvun1 6841 |
. . . . . . . . . . . . . . . 16
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) ∧ ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1))) |
109 | 32, 35, 108 | mp3an12 1449 |
. . . . . . . . . . . . . . 15
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1)))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1))) |
110 | 58, 107, 109 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1))) |
111 | 30 | fvconst2 7061 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1)) = 1) |
112 | 107, 111 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1)) = 1) |
113 | 110, 112 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = 1) |
114 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → 𝑛 ∈ (1...(𝑁 − 1))) |
115 | 66 | nnzd 12354 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑁 ∈ ℤ) |
116 | | peano2zm 12293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
117 | 115, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
118 | | 1z 12280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 1 ∈
ℤ |
119 | 117, 118 | jctil 519 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (1 ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ)) |
120 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℤ) |
121 | 120, 118 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ (1...(𝑁 − 1)) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
122 | | fzaddel 13219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((1
∈ ℤ ∧ (𝑁
− 1) ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑛 ∈
(1...(𝑁 − 1)) ↔
(𝑛 + 1) ∈ ((1 +
1)...((𝑁 − 1) +
1)))) |
123 | 119, 121,
122 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 ∈ (1...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))) |
124 | 114, 123 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))) |
125 | 69 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
126 | 125 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
127 | 124, 126 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...𝑁)) |
128 | 127 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁)) |
129 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → 𝑦 ∈ ((1 + 1)...𝑁)) |
130 | | peano2z 12291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (1 ∈
ℤ → (1 + 1) ∈ ℤ) |
131 | 118, 130 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (1 + 1)
∈ ℤ |
132 | 115, 131 | jctil 519 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ((1 + 1) ∈ ℤ
∧ 𝑁 ∈
ℤ)) |
133 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℤ) |
134 | 133, 118 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ((1 + 1)...𝑁) → (𝑦 ∈ ℤ ∧ 1 ∈
ℤ)) |
135 | | fzsubel 13221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((1 +
1) ∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (𝑦
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
136 | 132, 134,
135 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
137 | 129, 136 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1))) |
138 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 1 ∈
ℂ |
139 | 138, 138 | pncan3oi 11167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((1 + 1)
− 1) = 1 |
140 | 139 | oveq1i 7265 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((1 + 1)
− 1)...(𝑁 − 1))
= (1...(𝑁 −
1)) |
141 | 137, 140 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (1...(𝑁 − 1))) |
142 | 133 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℂ) |
143 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℕ) |
144 | 143 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℂ) |
145 | | subadd2 11155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑦 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝑛 ∈
ℂ) → ((𝑦 −
1) = 𝑛 ↔ (𝑛 + 1) = 𝑦)) |
146 | 138, 145 | mp3an2 1447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑦 − 1) = 𝑛 ↔ (𝑛 + 1) = 𝑦)) |
147 | 146 | bicomd 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑛 + 1) = 𝑦 ↔ (𝑦 − 1) = 𝑛)) |
148 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑛 + 1) = 𝑦 ↔ 𝑦 = (𝑛 + 1)) |
149 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 − 1) = 𝑛 ↔ 𝑛 = (𝑦 − 1)) |
150 | 147, 148,
149 | 3bitr3g 312 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) |
151 | 142, 144,
150 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ ((1 + 1)...𝑁) ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) |
152 | 151 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ((1 + 1)...𝑁) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) |
153 | 152 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) |
154 | | reu6i 3658 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1)) |
155 | 141, 153,
154 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1)) |
156 | 155 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1)) |
157 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) |
158 | 157 | f1ompt 6967 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 +
1)...𝑁) ↔
(∀𝑛 ∈
(1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))) |
159 | 128, 156,
158 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 +
1)...𝑁)) |
160 | | f1osng 6740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℕ ∧ 1 ∈
V) → {〈𝑁,
1〉}:{𝑁}–1-1-onto→{1}) |
161 | 66, 30, 160 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {〈𝑁, 1〉}:{𝑁}–1-1-onto→{1}) |
162 | 66 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑁 ∈ ℝ) |
163 | 162 | ltm1d 11837 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
164 | 117 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
165 | 164, 162 | ltnled 11052 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
166 | 163, 165 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
167 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
168 | 166, 167 | nsyl 140 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
169 | | disjsn 4644 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(1...(𝑁 −
1))) |
170 | 168, 169 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
171 | | 1re 10906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 1 ∈
ℝ |
172 | 171 | ltp1i 11809 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 1 < (1
+ 1) |
173 | 171, 171 | readdcli 10921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (1 + 1)
∈ ℝ |
174 | 171, 173 | ltnlei 11026 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (1 <
(1 + 1) ↔ ¬ (1 + 1) ≤ 1) |
175 | 172, 174 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ¬ (1
+ 1) ≤ 1 |
176 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1 ∈
((1 + 1)...𝑁) → (1 +
1) ≤ 1) |
177 | 175, 176 | mto 196 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬ 1
∈ ((1 + 1)...𝑁) |
178 | | disjsn 4644 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((1 +
1)...𝑁) ∩ {1}) =
∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁)) |
179 | 177, 178 | mpbir 230 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((1 +
1)...𝑁) ∩ {1}) =
∅ |
180 | | f1oun 6719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 +
1)...𝑁) ∧ {〈𝑁, 1〉}:{𝑁}–1-1-onto→{1})
∧ (((1...(𝑁 − 1))
∩ {𝑁}) = ∅ ∧
(((1 + 1)...𝑁) ∩ {1}) =
∅)) → ((𝑛 ∈
(1...(𝑁 − 1)) ↦
(𝑛 + 1)) ∪ {〈𝑁, 1〉}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1
+ 1)...𝑁) ∪
{1})) |
181 | 179, 180 | mpanr2 700 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 +
1)...𝑁) ∧ {〈𝑁, 1〉}:{𝑁}–1-1-onto→{1})
∧ ((1...(𝑁 − 1))
∩ {𝑁}) = ∅)
→ ((𝑛 ∈
(1...(𝑁 − 1)) ↦
(𝑛 + 1)) ∪ {〈𝑁, 1〉}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1
+ 1)...𝑁) ∪
{1})) |
182 | 159, 161,
170, 181 | syl21anc 834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {〈𝑁, 1〉}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1
+ 1)...𝑁) ∪
{1})) |
183 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 1 ∈
V) |
184 | 66, 62 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
185 | 69, 184 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘1)) |
186 | | uzid 12526 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
187 | | peano2uz 12570 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
188 | 117, 186,
187 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
189 | 69, 188 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
190 | | fzsplit2 13210 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
191 | 185, 189,
190 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
192 | 69 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
193 | | fzsn 13227 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
194 | 115, 193 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
195 | 192, 194 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
196 | 195 | uneq2d 4093 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
197 | 191, 196 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁)) |
198 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1) |
199 | 198 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1) |
200 | 66, 183, 197, 199 | fmptapd 7025 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {〈𝑁, 1〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) |
201 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 𝑁 → (𝑛 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1)))) |
202 | 201 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑁 → (¬ 𝑛 ∈ (1...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1)))) |
203 | 168, 202 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑛 = 𝑁 → ¬ 𝑛 ∈ (1...(𝑁 − 1)))) |
204 | 203 | necon2ad 2957 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ≠ 𝑁)) |
205 | 204 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → 𝑛 ≠ 𝑁) |
206 | | ifnefalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ≠ 𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1)) |
207 | 205, 206 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1)) |
208 | 207 | mpteq2dva 5170 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1))) |
209 | 208 | uneq1d 4092 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {〈𝑁, 1〉}) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {〈𝑁, 1〉})) |
210 | 200, 209 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {〈𝑁, 1〉})) |
211 | 191, 196 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
212 | | uzid 12526 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1 ∈
ℤ → 1 ∈ (ℤ≥‘1)) |
213 | | peano2uz 12570 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1 ∈
(ℤ≥‘1) → (1 + 1) ∈
(ℤ≥‘1)) |
214 | 118, 212,
213 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 + 1)
∈ (ℤ≥‘1) |
215 | | fzsplit2 13210 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((1 + 1)
∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘1))
→ (1...𝑁) = ((1...1)
∪ ((1 + 1)...𝑁))) |
216 | 214, 184,
215 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1...𝑁) = ((1...1) ∪ ((1 + 1)...𝑁))) |
217 | | fzsn 13227 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (1 ∈
ℤ → (1...1) = {1}) |
218 | 118, 217 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1...1) =
{1} |
219 | 218 | uneq1i 4089 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((1...1)
∪ ((1 + 1)...𝑁)) = ({1}
∪ ((1 + 1)...𝑁)) |
220 | 219 | equncomi 4085 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1...1)
∪ ((1 + 1)...𝑁)) = (((1
+ 1)...𝑁) ∪
{1}) |
221 | 216, 220 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1...𝑁) = (((1 + 1)...𝑁) ∪ {1})) |
222 | 210, 211,
221 | f1oeq123d 6694 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {〈𝑁, 1〉}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1
+ 1)...𝑁) ∪
{1}))) |
223 | 182, 222 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁)) |
224 | | f1oco 6722 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
225 | 42, 223, 224 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
226 | | dff1o3 6706 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁) ↔ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))))) |
227 | 226 | simprbi 496 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))) |
228 | 225, 227 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))) |
229 | | imain 6503 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
◡((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))) |
230 | 228, 229 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))) |
231 | 48 | nn0red 12224 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) |
232 | 231 | ltp1d 11835 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1)) |
233 | | fzdisj 13212 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
234 | 232, 233 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
235 | 234 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ∅)) |
236 | | ima0 5974 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ∅) =
∅ |
237 | 235, 236 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ∅) |
238 | 230, 237 | sylan9req 2800 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = ∅) |
239 | | imassrn 5969 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)) ⊆ ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) |
240 | | f1of 6700 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)⟶(1...𝑁)) |
241 | | frn 6591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)⟶(1...𝑁) → ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ⊆ (1...𝑁)) |
242 | 223, 240,
241 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ⊆ (1...𝑁)) |
243 | 239, 242 | sstrid 3928 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)) ⊆ (1...𝑁)) |
244 | 243 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)) ⊆ (1...𝑁)) |
245 | | elfz1end 13215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) |
246 | 66, 245 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
247 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) |
248 | 198, 247,
30 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ (1...𝑁) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) = 1) |
249 | 246, 248 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) = 1) |
250 | 249 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) = 1) |
251 | | f1ofn 6701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁)) |
252 | 223, 251 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁)) |
253 | 252 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁)) |
254 | | fzss1 13224 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
255 | 63, 254 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
256 | 255 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
257 | | eluzfz2 13193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
258 | 75, 257 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
259 | | fnfvima 7091 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁) ∧ ((𝑦 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑦 + 1)...𝑁)) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) |
260 | 253, 256,
258, 259 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) |
261 | 250, 260 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 1 ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) |
262 | | fnfvima 7091 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)) ⊆ (1...𝑁) ∧ 1 ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)))) |
263 | 100, 244,
261, 262 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)))) |
264 | | imaco 6144 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) |
265 | 263, 264 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) |
266 | | fnconstg 6646 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦))) |
267 | 30, 266 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) |
268 | | fnconstg 6646 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) |
269 | 33, 268 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) |
270 | | fvun2 6842 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) ∧ (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘1) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1))) |
271 | 267, 269,
270 | mp3an12 1449 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘1) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1))) |
272 | 238, 265,
271 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1))) |
273 | 33 | fvconst2 7061 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇))‘1) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1)) = 0) |
274 | 265, 273 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1)) = 0) |
275 | 272, 274 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = 0) |
276 | 275 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1 +
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1))) = (1 + 0)) |
277 | 97, 113, 276 | 3eqtr4a 2805 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)))) |
278 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘1) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1))) |
279 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘1) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1))) |
280 | 279 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘1) → (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)))) |
281 | 278, 280 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘1) → ((((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) ↔ (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1))))) |
282 | 277, 281 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 = ((2nd ‘(1st
‘𝑇))‘1) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
283 | 282 | imp 406 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
284 | 283 | adantlr 711 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
285 | | eldifsn 4717 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ↔ (𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st
‘𝑇))‘1))) |
286 | | df-ne 2943 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ≠ ((2nd
‘(1st ‘𝑇))‘1) ↔ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) |
287 | 286 | anbi2i 622 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st
‘𝑇))‘1)) ↔
(𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1))) |
288 | 285, 287 | bitri 274 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ↔ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1))) |
289 | | fnconstg 6646 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → (((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1)))) |
290 | 30, 289 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) |
291 | 290, 35 | pm3.2i 470 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
292 | | imain 6503 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
293 | 45, 292 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
294 | | fzdisj 13212 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 + 1) < ((𝑦 + 1) + 1) → (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
295 | 52, 294 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
296 | 295 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
297 | 296, 56 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
298 | 293, 297 | sylan9req 2800 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
299 | | fnun 6529 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ∧ (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) → ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
300 | 291, 298,
299 | sylancr 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
301 | | imaundi 6042 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
302 | | fzpred 13233 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈
(ℤ≥‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
303 | 184, 302 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
304 | | uncom 4083 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({1}
∪ ((1 + 1)...𝑁)) = (((1
+ 1)...𝑁) ∪
{1}) |
305 | 303, 304 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1...𝑁) = (((1 + 1)...𝑁) ∪ {1})) |
306 | 305 | difeq1d 4052 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...𝑁) ∖ {1}) = ((((1 + 1)...𝑁) ∪ {1}) ∖
{1})) |
307 | | difun2 4411 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((1 +
1)...𝑁) ∪ {1}) ∖
{1}) = (((1 + 1)...𝑁)
∖ {1}) |
308 | | disj3 4384 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((1 +
1)...𝑁) ∩ {1}) =
∅ ↔ ((1 + 1)...𝑁) = (((1 + 1)...𝑁) ∖ {1})) |
309 | 179, 308 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1 +
1)...𝑁) = (((1 + 1)...𝑁) ∖ {1}) |
310 | 307, 309 | eqtr4i 2769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((1 +
1)...𝑁) ∪ {1}) ∖
{1}) = ((1 + 1)...𝑁) |
311 | 306, 310 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...𝑁) ∖ {1}) = ((1 + 1)...𝑁)) |
312 | 311 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1...𝑁) ∖ {1}) = ((1 + 1)...𝑁)) |
313 | | eluzp1p1 12539 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘(1 + 1))) |
314 | 63, 313 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘(1 + 1))) |
315 | | fzsplit2 13210 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 + 1) + 1) ∈
(ℤ≥‘(1 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) → ((1 + 1)...𝑁) = (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
316 | 314, 75, 315 | syl2an2 682 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1 + 1)...𝑁) = (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
317 | 312, 316 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1...𝑁) ∖ {1}) = (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
318 | 317 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))) |
319 | | imadif 6502 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {1}))) |
320 | 45, 319 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {1}))) |
321 | | eluzfz1 13192 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) |
322 | 184, 321 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 1 ∈ (1...𝑁)) |
323 | | fnsnfv 6829 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ 1 ∈ (1...𝑁)) → {((2nd
‘(1st ‘𝑇))‘1)} = ((2nd
‘(1st ‘𝑇)) “ {1})) |
324 | 99, 322, 323 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {((2nd
‘(1st ‘𝑇))‘1)} = ((2nd
‘(1st ‘𝑇)) “ {1})) |
325 | 324 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ {1}) = {((2nd
‘(1st ‘𝑇))‘1)}) |
326 | 81, 325 | difeq12d 4054 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {1})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
327 | 320, 326 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
328 | 327 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
329 | 318, 328 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
330 | 301, 329 | eqtr3id 2793 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
331 | 330 | fneq2d 6511 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ↔ ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) |
332 | 300, 331 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
333 | | disjdifr 4403 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑁) ∖
{((2nd ‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ |
334 | | fnconstg 6646 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → ({((2nd ‘(1st ‘𝑇))‘1)} × {1}) Fn
{((2nd ‘(1st ‘𝑇))‘1)}) |
335 | 30, 334 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
({((2nd ‘(1st ‘𝑇))‘1)} × {1}) Fn
{((2nd ‘(1st ‘𝑇))‘1)} |
336 | | fvun1 6841 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}) Fn
{((2nd ‘(1st ‘𝑇))‘1)} ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
337 | 335, 336 | mp3an2 1447 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
338 | | fnconstg 6646 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → ({((2nd ‘(1st ‘𝑇))‘1)} × {0}) Fn
{((2nd ‘(1st ‘𝑇))‘1)}) |
339 | 33, 338 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
({((2nd ‘(1st ‘𝑇))‘1)} × {0}) Fn
{((2nd ‘(1st ‘𝑇))‘1)} |
340 | | fvun1 6841 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}) Fn
{((2nd ‘(1st ‘𝑇))‘1)} ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
341 | 339, 340 | mp3an2 1447 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
342 | 337, 341 | eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
343 | 333, 342 | mpanr1 699 |
. . . . . . . . . . . . . 14
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
344 | 332, 343 | sylan 579 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
345 | 288, 344 | sylan2br 594 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)))
→ ((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
346 | 345 | anassrs 467 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
347 | | fzpred 13233 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → (1...(𝑦 + 1)) = ({1} ∪ ((1 + 1)...(𝑦 + 1)))) |
348 | 63, 347 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...(𝑦 + 1)) = ({1} ∪ ((1 + 1)...(𝑦 + 1)))) |
349 | 348 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) = ((2nd
‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1))))) |
350 | 349 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) = ((2nd
‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1))))) |
351 | 324 | uneq1d 4092 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1)))) = (((2nd
‘(1st ‘𝑇)) “ {1}) ∪ ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))))) |
352 | | uncom 4083 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) = ({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1)))) |
353 | | imaundi 6042 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1)))) = (((2nd
‘(1st ‘𝑇)) “ {1}) ∪ ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1)))) |
354 | 351, 352,
353 | 3eqtr4g 2804 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) = ((2nd
‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1))))) |
355 | 354 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) = ((2nd
‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1))))) |
356 | 350, 355 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)})) |
357 | 356 | xpeq1d 5609 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) = ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) × {1})) |
358 | | xpundir 5647 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) × {1}) =
((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1})) |
359 | 357, 358 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) = ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))) |
360 | 359 | uneq1d 4092 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1})) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
361 | | un23 4098 |
. . . . . . . . . . . . . 14
⊢
(((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1})) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1})) |
362 | 360, 361 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))) |
363 | 362 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛)) |
364 | 363 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛)) |
365 | | imaco 6144 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦))) |
366 | | df-ima 5593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦)) = ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ (1...𝑦)) |
367 | | peano2uz 12570 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
368 | 71, 367 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
369 | 368 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
370 | 70, 369 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝑦)) |
371 | | fzss2 13225 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘𝑦) → (1...𝑦) ⊆ (1...𝑁)) |
372 | 370, 371 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑦) ⊆ (1...𝑁)) |
373 | 372 | resmptd 5937 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ (1...𝑦)) = (𝑛 ∈ (1...𝑦) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) |
374 | | fzss2 13225 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → (1...𝑦) ⊆ (1...(𝑁 − 1))) |
375 | 71, 374 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...𝑦) ⊆ (1...(𝑁 − 1))) |
376 | 375 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑦) ⊆ (1...(𝑁 − 1))) |
377 | 168 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
378 | 376, 377 | ssneldd 3920 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ¬ 𝑁 ∈ (1...𝑦)) |
379 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 𝑁 → (𝑛 ∈ (1...𝑦) ↔ 𝑁 ∈ (1...𝑦))) |
380 | 379 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 𝑁 → (¬ 𝑛 ∈ (1...𝑦) ↔ ¬ 𝑁 ∈ (1...𝑦))) |
381 | 378, 380 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 = 𝑁 → ¬ 𝑛 ∈ (1...𝑦))) |
382 | 381 | necon2ad 2957 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑦) → 𝑛 ≠ 𝑁)) |
383 | 382 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑦)) → 𝑛 ≠ 𝑁) |
384 | 383, 206 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑦)) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1)) |
385 | 384 | mpteq2dva 5170 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑦) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1))) |
386 | 373, 385 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ (1...𝑦)) = (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1))) |
387 | 386 | rneqd 5836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ (1...𝑦)) = ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1))) |
388 | 366, 387 | syl5eq 2791 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦)) = ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1))) |
389 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) = (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) |
390 | 389 | elrnmpt 5854 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ V → (𝑗 ∈ ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) ↔ ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1))) |
391 | 390 | elv 3428 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) ↔ ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1)) |
392 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
393 | 392 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℤ) |
394 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ (1...𝑦)) → 𝑛 ∈ (1...𝑦)) |
395 | 118 | jctl 523 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℤ → (1 ∈
ℤ ∧ 𝑦 ∈
ℤ)) |
396 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ (1...𝑦) → 𝑛 ∈ ℤ) |
397 | 396, 118 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ (1...𝑦) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
398 | | fzaddel 13219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((1
∈ ℤ ∧ 𝑦
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...𝑦) ↔ (𝑛 + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
399 | 395, 397,
398 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ (1...𝑦)) → (𝑛 ∈ (1...𝑦) ↔ (𝑛 + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
400 | 394, 399 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ (1...𝑦)) → (𝑛 + 1) ∈ ((1 + 1)...(𝑦 + 1))) |
401 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = (𝑛 + 1) → (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
402 | 400, 401 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ (1...𝑦)) → (𝑗 = (𝑛 + 1) → 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
403 | 402 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℤ →
(∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1) → 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
404 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → 𝑗 ∈ ℤ) |
405 | 404 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → 𝑗 ∈ ℂ) |
406 | | npcan1 11330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ ℂ → ((𝑗 − 1) + 1) = 𝑗) |
407 | 405, 406 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → ((𝑗 − 1) + 1) = 𝑗) |
408 | 407 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → (((𝑗 − 1) + 1) ∈ ((1 +
1)...(𝑦 + 1)) ↔ 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
409 | 408 | ibir 267 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → ((𝑗 − 1) + 1) ∈ ((1 +
1)...(𝑦 +
1))) |
410 | 409 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → ((𝑗 − 1) + 1) ∈ ((1 +
1)...(𝑦 +
1))) |
411 | | peano2zm 12293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ ℤ → (𝑗 − 1) ∈
ℤ) |
412 | 404, 411 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → (𝑗 − 1) ∈
ℤ) |
413 | 412, 118 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → ((𝑗 − 1) ∈ ℤ ∧
1 ∈ ℤ)) |
414 | | fzaddel 13219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((1
∈ ℤ ∧ 𝑦
∈ ℤ) ∧ ((𝑗
− 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑗 − 1) ∈ (1...𝑦) ↔ ((𝑗 − 1) + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
415 | 395, 413,
414 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → ((𝑗 − 1) ∈ (1...𝑦) ↔ ((𝑗 − 1) + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
416 | 410, 415 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → (𝑗 − 1) ∈ (1...𝑦)) |
417 | 405 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → 𝑗 ∈
ℂ) |
418 | 406 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ℂ → 𝑗 = ((𝑗 − 1) + 1)) |
419 | 417, 418 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → 𝑗 = ((𝑗 − 1) + 1)) |
420 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = (𝑗 − 1) → (𝑛 + 1) = ((𝑗 − 1) + 1)) |
421 | 420 | rspceeqv 3567 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑗 − 1) ∈ (1...𝑦) ∧ 𝑗 = ((𝑗 − 1) + 1)) → ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1)) |
422 | 416, 419,
421 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1)) |
423 | 422 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℤ → (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1))) |
424 | 403, 423 | impbid 211 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℤ →
(∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1) ↔ 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
425 | 393, 424 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1) ↔ 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
426 | 391, 425 | syl5bb 282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) ↔ 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
427 | 426 | eqrdv 2736 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) = ((1 + 1)...(𝑦 + 1))) |
428 | 388, 427 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦)) = ((1 + 1)...(𝑦 + 1))) |
429 | 428 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦))) = ((2nd ‘(1st
‘𝑇)) “ ((1 +
1)...(𝑦 +
1)))) |
430 | 365, 429 | syl5eq 2791 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) = ((2nd ‘(1st
‘𝑇)) “ ((1 +
1)...(𝑦 +
1)))) |
431 | 430 | xpeq1d 5609 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1})) |
432 | | imaundi 6042 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1)))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ {𝑁}) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...(𝑁 − 1)))) |
433 | | imaco 6144 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ {𝑁}) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) |
434 | | imaco 6144 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...(𝑁 − 1))) = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1)))) |
435 | 433, 434 | uneq12i 4091 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ {𝑁}) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))))) |
436 | 432, 435 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))))) |
437 | 189 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
438 | | fzsplit2 13210 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
439 | 73, 437, 438 | syl2an2 682 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
440 | 195 | uneq2d 4093 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
441 | 440 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
442 | 439, 441 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
443 | | uncom 4083 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁}) = ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1))) |
444 | 442, 443 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1)))) |
445 | 444 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1))))) |
446 | 249 | sneqd 4570 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁)} = {1}) |
447 | | fnsnfv 6829 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁)} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) |
448 | 252, 246,
447 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁)} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) |
449 | 446, 448 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {1} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) |
450 | 449 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ {1}) = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁}))) |
451 | 324, 450 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {((2nd
‘(1st ‘𝑇))‘1)} = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁}))) |
452 | 451 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → {((2nd
‘(1st ‘𝑇))‘1)} = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁}))) |
453 | | df-ima 5593 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))) = ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ ((𝑦 + 1)...(𝑁 − 1))) |
454 | | fzss1 13224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1)...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))) |
455 | 63, 454 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))) |
456 | | fzss2 13225 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
457 | 189, 456 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
458 | 455, 457 | sylan9ssr 3931 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...(𝑁 − 1)) ⊆ (1...𝑁)) |
459 | 458 | resmptd 5937 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ ((𝑦 + 1)...(𝑁 − 1))) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) |
460 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑁 ∈ ((𝑦 + 1)...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
461 | 166, 460 | nsyl 140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → ¬ 𝑁 ∈ ((𝑦 + 1)...(𝑁 − 1))) |
462 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝑁 → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ 𝑁 ∈ ((𝑦 + 1)...(𝑁 − 1)))) |
463 | 462 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 𝑁 → (¬ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ ((𝑦 + 1)...(𝑁 − 1)))) |
464 | 461, 463 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝑛 = 𝑁 → ¬ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)))) |
465 | 464 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) → ¬ 𝑛 = 𝑁)) |
466 | 465 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → ¬ 𝑛 = 𝑁) |
467 | 466 | iffalsed 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1)) |
468 | 467 | mpteq2dva 5170 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
469 | 468 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
470 | 459, 469 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ ((𝑦 + 1)...(𝑁 − 1))) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
471 | 470 | rneqd 5836 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ ((𝑦 + 1)...(𝑁 − 1))) = ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
472 | 453, 471 | syl5eq 2791 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))) = ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
473 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → 𝑗 ∈ ℤ) |
474 | 473 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → 𝑗 ∈ ℂ) |
475 | 474, 406 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → ((𝑗 − 1) + 1) = 𝑗) |
476 | 475 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → (((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) ↔ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
477 | 476 | ibir 267 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → ((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) |
478 | 477 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → ((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) |
479 | 50 | nnzd 12354 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℤ) |
480 | 117, 479 | anim12ci 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1) ∈ ℤ ∧ (𝑁 − 1) ∈
ℤ)) |
481 | 473, 411 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → (𝑗 − 1) ∈ ℤ) |
482 | 481, 118 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → ((𝑗 − 1) ∈ ℤ ∧
1 ∈ ℤ)) |
483 | | fzaddel 13219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑦 + 1) ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ) ∧ ((𝑗 −
1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑗 − 1) ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ ((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
484 | 480, 482,
483 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → ((𝑗 − 1) ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ ((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
485 | 478, 484 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → (𝑗 − 1) ∈ ((𝑦 + 1)...(𝑁 − 1))) |
486 | 474, 418 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → 𝑗 = ((𝑗 − 1) + 1)) |
487 | 486 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → 𝑗 = ((𝑗 − 1) + 1)) |
488 | 420 | rspceeqv 3567 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑗 − 1) ∈ ((𝑦 + 1)...(𝑁 − 1)) ∧ 𝑗 = ((𝑗 − 1) + 1)) → ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1)) |
489 | 485, 487,
488 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1)) |
490 | 489 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1))) |
491 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) |
492 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) → 𝑛 ∈ ℤ) |
493 | 492, 118 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
494 | | fzaddel 13219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑦 + 1) ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ) ∧ (𝑛 ∈
ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
495 | 480, 493,
494 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
496 | 491, 495 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → (𝑛 + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) |
497 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = (𝑛 + 1) → (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) ↔ (𝑛 + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
498 | 496, 497 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → (𝑗 = (𝑛 + 1) → 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
499 | 498 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1) → 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
500 | 490, 499 | impbid 211 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) ↔ ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1))) |
501 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)) |
502 | 501 | elrnmpt 5854 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ V → (𝑗 ∈ ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)) ↔ ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1))) |
503 | 502 | elv 3428 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)) ↔ ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1)) |
504 | 500, 503 | bitr4di 288 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) ↔ 𝑗 ∈ ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)))) |
505 | 504 | eqrdv 2736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) = ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
506 | 69 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) = (((𝑦 + 1) + 1)...𝑁)) |
507 | 506 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) = (((𝑦 + 1) + 1)...𝑁)) |
508 | 472, 505,
507 | 3eqtr2rd 2785 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1)...𝑁) = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1)))) |
509 | 508 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))))) |
510 | 452, 509 | uneq12d 4094 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1)))))) |
511 | 436, 445,
510 | 3eqtr4a 2805 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) = ({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
512 | 511 | xpeq1d 5609 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) = (({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) × {0})) |
513 | | xpundir 5647 |
. . . . . . . . . . . . . . . 16
⊢
(({((2nd ‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) × {0}) = (({((2nd
‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) |
514 | 512, 513 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) = (({((2nd
‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
515 | 431, 514 | uneq12d 4094 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪
(({((2nd ‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
516 | | unass 4096 |
. . . . . . . . . . . . . . 15
⊢
(((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0})) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪
(({((2nd ‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
517 | | un23 4098 |
. . . . . . . . . . . . . . 15
⊢
(((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0})) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0})) |
518 | 516, 517 | eqtr3i 2768 |
. . . . . . . . . . . . . 14
⊢
((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪
(({((2nd ‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0})) |
519 | 515, 518 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))) |
520 | 519 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
521 | 520 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
522 | 346, 364,
521 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
523 | | snssi 4738 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℂ → {1} ⊆ ℂ) |
524 | 138, 523 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ {1}
⊆ ℂ |
525 | | 0cn 10898 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℂ |
526 | | snssi 4738 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
527 | 525, 526 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ {0}
⊆ ℂ |
528 | 524, 527 | unssi 4115 |
. . . . . . . . . . . . 13
⊢ ({1}
∪ {0}) ⊆ ℂ |
529 | 30 | fconst 6644 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦))⟶{1} |
530 | 33 | fconst 6644 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))⟶{0} |
531 | 529, 530 | pm3.2i 470 |
. . . . . . . . . . . . . . . 16
⊢
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦))⟶{1} ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))⟶{0}) |
532 | | fun 6620 |
. . . . . . . . . . . . . . . 16
⊢
(((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦))⟶{1} ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))⟶{0}) ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = ∅) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))⟶({1} ∪ {0})) |
533 | 531, 238,
532 | sylancr 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))⟶({1} ∪ {0})) |
534 | | imaundi 6042 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) |
535 | | fzsplit2 13210 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑦)) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
536 | 63, 370, 535 | syl2an2 682 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
537 | 536 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))) |
538 | | f1ofo 6707 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–onto→(1...𝑁)) |
539 | | foima 6677 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–onto→(1...𝑁) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑁)) = (1...𝑁)) |
540 | 225, 538,
539 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑁)) = (1...𝑁)) |
541 | 540 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑁)) = (1...𝑁)) |
542 | 537, 541 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
543 | 534, 542 | eqtr3id 2793 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
544 | 543 | feq2d 6570 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))⟶({1} ∪ {0}) ↔
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))) |
545 | 533, 544 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})) |
546 | 545 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ∈ ({1} ∪ {0})) |
547 | 528, 546 | sselid 3915 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ∈ ℂ) |
548 | 547 | addid2d 11106 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (0 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
549 | 548 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(0 + ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
550 | 522, 549 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (0 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
551 | 93, 95, 284, 550 | ifbothda 4494 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
552 | 551 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) = (((1st ‘(1st
‘𝑇))‘𝑛) + (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
553 | | elmapi 8595 |
. . . . . . . . . . . . 13
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
554 | 26, 553 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
555 | 554 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾)) |
556 | | elfzonn0 13360 |
. . . . . . . . . . 11
⊢
(((1st ‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
557 | 555, 556 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
558 | 557 | nn0cnd 12225 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
559 | 558 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
560 | 138, 525 | ifcli 4503 |
. . . . . . . . 9
⊢ if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) ∈
ℂ |
561 | 560 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
∈ ℂ) |
562 | 559, 561,
547 | addassd 10928 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = (((1st ‘(1st
‘𝑇))‘𝑛) + (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
563 | 552, 562 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) = ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
564 | 563 | mpteq2dva 5170 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
565 | 91, 564 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
566 | | poimirlem18.4 |
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘𝑇) =
0) |
567 | 566 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘𝑇) =
0) |
568 | | elfzle1 13188 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦) |
569 | 568 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 0 ≤ 𝑦) |
570 | 567, 569 | eqbrtrd 5092 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘𝑇) ≤ 𝑦) |
571 | | 0re 10908 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
572 | 566, 571 | eqeltrdi 2847 |
. . . . . . . . 9
⊢ (𝜑 → (2nd
‘𝑇) ∈
ℝ) |
573 | | lenlt 10984 |
. . . . . . . . 9
⊢
(((2nd ‘𝑇) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((2nd
‘𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd ‘𝑇))) |
574 | 572, 231,
573 | syl2an 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd ‘𝑇))) |
575 | 570, 574 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ¬ 𝑦 < (2nd
‘𝑇)) |
576 | 575 | iffalsed 4467 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) = (𝑦 + 1)) |
577 | 576 | csbeq1d 3832 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋(𝑦 + 1) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
578 | | ovex 7288 |
. . . . . 6
⊢ (𝑦 + 1) ∈ V |
579 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1))) |
580 | 579 | imaeq2d 5958 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...(𝑦 +
1)))) |
581 | 580 | xpeq1d 5609 |
. . . . . . . 8
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})) |
582 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1)) |
583 | 582 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁)) |
584 | 583 | imaeq2d 5958 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
585 | 584 | xpeq1d 5609 |
. . . . . . . 8
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) |
586 | 581, 585 | uneq12d 4094 |
. . . . . . 7
⊢ (𝑗 = (𝑦 + 1) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
587 | 586 | oveq2d 7271 |
. . . . . 6
⊢ (𝑗 = (𝑦 + 1) → ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
588 | 578, 587 | csbie 3864 |
. . . . 5
⊢
⦋(𝑦 +
1) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
589 | 577, 588 | eqtrdi 2795 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
590 | | ovexd 7290 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
∈ V) |
591 | | fvexd 6771 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ∈ V) |
592 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0)))) |
593 | 545 | ffnd 6585 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
594 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(2nd ‘(1st
‘𝑇)) |
595 | | nfmpt1 5178 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) |
596 | 594, 595 | nfco 5763 |
. . . . . . . . . 10
⊢
Ⅎ𝑛((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) |
597 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(1...𝑦) |
598 | 596, 597 | nfima 5966 |
. . . . . . . . 9
⊢
Ⅎ𝑛(((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) |
599 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑛{1} |
600 | 598, 599 | nfxp 5613 |
. . . . . . . 8
⊢
Ⅎ𝑛((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) |
601 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛((𝑦 + 1)...𝑁) |
602 | 596, 601 | nfima 5966 |
. . . . . . . . 9
⊢
Ⅎ𝑛(((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) |
603 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑛{0} |
604 | 602, 603 | nfxp 5613 |
. . . . . . . 8
⊢
Ⅎ𝑛((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) |
605 | 600, 604 | nfun 4095 |
. . . . . . 7
⊢
Ⅎ𝑛(((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) |
606 | 605 | dffn5f 6822 |
. . . . . 6
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁) ↔ (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) = (𝑛 ∈ (1...𝑁) ↦ ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
607 | 593, 606 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) = (𝑛 ∈ (1...𝑁) ↦ ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
608 | 87, 590, 591, 592, 607 | offval2 7531 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) ∘f + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
609 | 565, 589,
608 | 3eqtr4rd 2789 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) ∘f + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
610 | 609 | mpteq2dva 5170 |
. 2
⊢ (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) ∘f + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
611 | 19, 610 | eqtr4d 2781 |
1
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) ∘f + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))) |