Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2rn Structured version   Visualization version   GIF version

Theorem cycpmco2rn 33082
Description: The orbit of the composition of a cyclic permutation and a well-chosen transposition is one element more than the orbit of the original permutation. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2rn (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))

Proof of Theorem cycpmco2rn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 un23 4137 . 2 (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) = (((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) ∪ {𝐼})
2 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
3 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
4 cycpmco2.e . . . . . . 7 𝐸 = ((𝑊𝐽) + 1)
5 ovexd 7422 . . . . . . 7 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
64, 5eqeltrid 2832 . . . . . 6 (𝜑𝐸 ∈ V)
7 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
87eldifad 3926 . . . . . . 7 (𝜑𝐼𝐷)
98s1cld 14568 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
10 splval 14716 . . . . . 6 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
113, 6, 6, 9, 10syl13anc 1374 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
122, 11eqtrid 2776 . . . 4 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1312rneqd 5902 . . 3 (𝜑 → ran 𝑈 = ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
14 ssrab2 4043 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
15 cycpmco2.d . . . . . . . . . 10 (𝜑𝐷𝑉)
16 cycpmco2.c . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
17 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
18 eqid 2729 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
1916, 17, 18tocycf 33074 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2015, 19syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2120fdmd 6698 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
223, 21eleqtrd 2830 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2314, 22sselid 3944 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
24 pfxcl 14642 . . . . . 6 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2523, 24syl 17 . . . . 5 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
26 ccatcl 14539 . . . . 5 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
2725, 9, 26syl2anc 584 . . . 4 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
28 swrdcl 14610 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2923, 28syl 17 . . . 4 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
30 ccatrn 14554 . . . 4 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
3127, 29, 30syl2anc 584 . . 3 (𝜑 → ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
32 ccatrn 14554 . . . . . 6 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
3325, 9, 32syl2anc 584 . . . . 5 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
34 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
35 dmeq 5867 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
36 eqidd 2730 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
3734, 35, 36f1eq123d 6792 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
3837elrab 3659 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
3922, 38sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4039simprd 495 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
41 f1cnv 6824 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
42 f1of 6800 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4340, 41, 423syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
44 cycpmco2.j . . . . . . . . . . 11 (𝜑𝐽 ∈ ran 𝑊)
4543, 44ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
46 wrddm 14486 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
4723, 46syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
4845, 47eleqtrd 2830 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
49 fzofzp1 13725 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5048, 49syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
514, 50eqeltrid 2832 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
52 pfxrn3 32862 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐸) = (𝑊 “ (0..^𝐸)))
5323, 51, 52syl2anc 584 . . . . . 6 (𝜑 → ran (𝑊 prefix 𝐸) = (𝑊 “ (0..^𝐸)))
54 s1rn 14564 . . . . . . 7 (𝐼𝐷 → ran ⟨“𝐼”⟩ = {𝐼})
558, 54syl 17 . . . . . 6 (𝜑 → ran ⟨“𝐼”⟩ = {𝐼})
5653, 55uneq12d 4132 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) = ((𝑊 “ (0..^𝐸)) ∪ {𝐼}))
5733, 56eqtrd 2764 . . . 4 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = ((𝑊 “ (0..^𝐸)) ∪ {𝐼}))
58 lencl 14498 . . . . . 6 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
59 nn0fz0 13586 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6059biimpi 216 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6123, 58, 603syl 18 . . . . 5 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
62 swrdrn3 32877 . . . . 5 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) = (𝑊 “ (𝐸..^(♯‘𝑊))))
6323, 51, 61, 62syl3anc 1373 . . . 4 (𝜑 → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) = (𝑊 “ (𝐸..^(♯‘𝑊))))
6457, 63uneq12d 4132 . . 3 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
6513, 31, 643eqtrd 2768 . 2 (𝜑 → ran 𝑈 = (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
66 fzosplit 13653 . . . . . 6 (𝐸 ∈ (0...(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊))))
6751, 66syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝑊)) = ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊))))
6867imaeq2d 6031 . . . 4 (𝜑 → (𝑊 “ (0..^(♯‘𝑊))) = (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))))
69 wrdf 14483 . . . . . . 7 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
7023, 69syl 17 . . . . . 6 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝐷)
7170ffnd 6689 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
72 fnima 6648 . . . . 5 (𝑊 Fn (0..^(♯‘𝑊)) → (𝑊 “ (0..^(♯‘𝑊))) = ran 𝑊)
7371, 72syl 17 . . . 4 (𝜑 → (𝑊 “ (0..^(♯‘𝑊))) = ran 𝑊)
74 elfzuz3 13482 . . . . . 6 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
75 fzoss2 13648 . . . . . 6 ((♯‘𝑊) ∈ (ℤ𝐸) → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
7651, 74, 753syl 18 . . . . 5 (𝜑 → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
77 fz0ssnn0 13583 . . . . . . . 8 (0...(♯‘𝑊)) ⊆ ℕ0
7877, 51sselid 3944 . . . . . . 7 (𝜑𝐸 ∈ ℕ0)
79 nn0uz 12835 . . . . . . 7 0 = (ℤ‘0)
8078, 79eleqtrdi 2838 . . . . . 6 (𝜑𝐸 ∈ (ℤ‘0))
81 fzoss1 13647 . . . . . 6 (𝐸 ∈ (ℤ‘0) → (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
8280, 81syl 17 . . . . 5 (𝜑 → (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
83 unima 6936 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (0..^𝐸) ⊆ (0..^(♯‘𝑊)) ∧ (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))) → (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))) = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8471, 76, 82, 83syl3anc 1373 . . . 4 (𝜑 → (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))) = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8568, 73, 843eqtr3d 2772 . . 3 (𝜑 → ran 𝑊 = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8685uneq1d 4130 . 2 (𝜑 → (ran 𝑊 ∪ {𝐼}) = (((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) ∪ {𝐼}))
871, 65, 863eqtr4a 2790 1 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  wss 3914  {csn 4589  cop 4595  cotp 4597  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  0cn0 12442  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535  ⟨“cs1 14560   substr csubstr 14605   prefix cpfx 14635   splice csplice 14714  Basecbs 17179  SymGrpcsymg 19299  toCycctocyc 33063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-csh 14754  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-efmnd 18796  df-symg 19300  df-tocyc 33064
This theorem is referenced by:  cycpmco2lem5  33087  cycpmco2lem6  33088  cycpmco2lem7  33089  cycpmco2  33090
  Copyright terms: Public domain W3C validator