Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2rn Structured version   Visualization version   GIF version

Theorem cycpmco2rn 30817
Description: The orbit of the composition of a cyclic permutation and a well-chosen transposition is one element more than the orbit of the original permutation. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2rn (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))

Proof of Theorem cycpmco2rn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 un23 4095 . 2 (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) = (((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) ∪ {𝐼})
2 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
3 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
4 cycpmco2.e . . . . . . 7 𝐸 = ((𝑊𝐽) + 1)
5 ovexd 7170 . . . . . . 7 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
64, 5eqeltrid 2894 . . . . . 6 (𝜑𝐸 ∈ V)
7 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
87eldifad 3893 . . . . . . 7 (𝜑𝐼𝐷)
98s1cld 13948 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
10 splval 14104 . . . . . 6 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
113, 6, 6, 9, 10syl13anc 1369 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
122, 11syl5eq 2845 . . . 4 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1312rneqd 5772 . . 3 (𝜑 → ran 𝑈 = ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
14 ssrab2 4007 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
15 cycpmco2.d . . . . . . . . . 10 (𝜑𝐷𝑉)
16 cycpmco2.c . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
17 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
18 eqid 2798 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
1916, 17, 18tocycf 30809 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2015, 19syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2120fdmd 6497 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
223, 21eleqtrd 2892 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2314, 22sseldi 3913 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
24 pfxcl 14030 . . . . . 6 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2523, 24syl 17 . . . . 5 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
26 ccatcl 13917 . . . . 5 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
2725, 9, 26syl2anc 587 . . . 4 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
28 swrdcl 13998 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2923, 28syl 17 . . . 4 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
30 ccatrn 13934 . . . 4 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
3127, 29, 30syl2anc 587 . . 3 (𝜑 → ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
32 ccatrn 13934 . . . . . 6 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
3325, 9, 32syl2anc 587 . . . . 5 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
34 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
35 dmeq 5736 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
36 eqidd 2799 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
3734, 35, 36f1eq123d 6583 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
3837elrab 3628 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
3922, 38sylib 221 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4039simprd 499 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
41 f1cnv 6613 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
42 f1of 6590 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4340, 41, 423syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
44 cycpmco2.j . . . . . . . . . . 11 (𝜑𝐽 ∈ ran 𝑊)
4543, 44ffvelrnd 6829 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
46 wrddm 13864 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
4723, 46syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
4845, 47eleqtrd 2892 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
49 fzofzp1 13129 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5048, 49syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
514, 50eqeltrid 2894 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
52 pfxrn3 30643 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐸) = (𝑊 “ (0..^𝐸)))
5323, 51, 52syl2anc 587 . . . . . 6 (𝜑 → ran (𝑊 prefix 𝐸) = (𝑊 “ (0..^𝐸)))
54 s1rn 13944 . . . . . . 7 (𝐼𝐷 → ran ⟨“𝐼”⟩ = {𝐼})
558, 54syl 17 . . . . . 6 (𝜑 → ran ⟨“𝐼”⟩ = {𝐼})
5653, 55uneq12d 4091 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) = ((𝑊 “ (0..^𝐸)) ∪ {𝐼}))
5733, 56eqtrd 2833 . . . 4 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = ((𝑊 “ (0..^𝐸)) ∪ {𝐼}))
58 lencl 13876 . . . . . 6 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
59 nn0fz0 13000 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6059biimpi 219 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6123, 58, 603syl 18 . . . . 5 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
62 swrdrn3 30655 . . . . 5 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) = (𝑊 “ (𝐸..^(♯‘𝑊))))
6323, 51, 61, 62syl3anc 1368 . . . 4 (𝜑 → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) = (𝑊 “ (𝐸..^(♯‘𝑊))))
6457, 63uneq12d 4091 . . 3 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
6513, 31, 643eqtrd 2837 . 2 (𝜑 → ran 𝑈 = (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
66 fzosplit 13065 . . . . . 6 (𝐸 ∈ (0...(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊))))
6751, 66syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝑊)) = ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊))))
6867imaeq2d 5896 . . . 4 (𝜑 → (𝑊 “ (0..^(♯‘𝑊))) = (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))))
69 wrdf 13862 . . . . . . 7 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
7023, 69syl 17 . . . . . 6 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝐷)
7170ffnd 6488 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
72 fnima 6450 . . . . 5 (𝑊 Fn (0..^(♯‘𝑊)) → (𝑊 “ (0..^(♯‘𝑊))) = ran 𝑊)
7371, 72syl 17 . . . 4 (𝜑 → (𝑊 “ (0..^(♯‘𝑊))) = ran 𝑊)
74 elfzuz3 12899 . . . . . 6 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
75 fzoss2 13060 . . . . . 6 ((♯‘𝑊) ∈ (ℤ𝐸) → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
7651, 74, 753syl 18 . . . . 5 (𝜑 → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
77 fz0ssnn0 12997 . . . . . . . 8 (0...(♯‘𝑊)) ⊆ ℕ0
7877, 51sseldi 3913 . . . . . . 7 (𝜑𝐸 ∈ ℕ0)
79 nn0uz 12268 . . . . . . 7 0 = (ℤ‘0)
8078, 79eleqtrdi 2900 . . . . . 6 (𝜑𝐸 ∈ (ℤ‘0))
81 fzoss1 13059 . . . . . 6 (𝐸 ∈ (ℤ‘0) → (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
8280, 81syl 17 . . . . 5 (𝜑 → (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
83 unima 6714 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (0..^𝐸) ⊆ (0..^(♯‘𝑊)) ∧ (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))) → (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))) = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8471, 76, 82, 83syl3anc 1368 . . . 4 (𝜑 → (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))) = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8568, 73, 843eqtr3d 2841 . . 3 (𝜑 → ran 𝑊 = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8685uneq1d 4089 . 2 (𝜑 → (ran 𝑊 ∪ {𝐼}) = (((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) ∪ {𝐼}))
871, 65, 863eqtr4a 2859 1 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cdif 3878  cun 3879  wss 3881  {csn 4525  cop 4531  cotp 4533  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522   Fn wfn 6319  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885  cuz 12231  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940   substr csubstr 13993   prefix cpfx 14023   splice csplice 14102  Basecbs 16475  SymGrpcsymg 18487  toCycctocyc 30798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-csh 14142  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-efmnd 18026  df-symg 18488  df-tocyc 30799
This theorem is referenced by:  cycpmco2lem5  30822  cycpmco2lem6  30823  cycpmco2lem7  30824  cycpmco2  30825
  Copyright terms: Public domain W3C validator