Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2rn Structured version   Visualization version   GIF version

Theorem cycpmco2rn 33118
Description: The orbit of the composition of a cyclic permutation and a well-chosen transposition is one element more than the orbit of the original permutation. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2rn (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))

Proof of Theorem cycpmco2rn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 un23 4197 . 2 (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) = (((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) ∪ {𝐼})
2 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
3 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
4 cycpmco2.e . . . . . . 7 𝐸 = ((𝑊𝐽) + 1)
5 ovexd 7483 . . . . . . 7 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
64, 5eqeltrid 2848 . . . . . 6 (𝜑𝐸 ∈ V)
7 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
87eldifad 3988 . . . . . . 7 (𝜑𝐼𝐷)
98s1cld 14651 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
10 splval 14799 . . . . . 6 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
113, 6, 6, 9, 10syl13anc 1372 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
122, 11eqtrid 2792 . . . 4 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1312rneqd 5963 . . 3 (𝜑 → ran 𝑈 = ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
14 ssrab2 4103 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
15 cycpmco2.d . . . . . . . . . 10 (𝜑𝐷𝑉)
16 cycpmco2.c . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
17 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
18 eqid 2740 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
1916, 17, 18tocycf 33110 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2015, 19syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2120fdmd 6757 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
223, 21eleqtrd 2846 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2314, 22sselid 4006 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
24 pfxcl 14725 . . . . . 6 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2523, 24syl 17 . . . . 5 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
26 ccatcl 14622 . . . . 5 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
2725, 9, 26syl2anc 583 . . . 4 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
28 swrdcl 14693 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2923, 28syl 17 . . . 4 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
30 ccatrn 14637 . . . 4 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
3127, 29, 30syl2anc 583 . . 3 (𝜑 → ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
32 ccatrn 14637 . . . . . 6 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
3325, 9, 32syl2anc 583 . . . . 5 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
34 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
35 dmeq 5928 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
36 eqidd 2741 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
3734, 35, 36f1eq123d 6854 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
3837elrab 3708 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
3922, 38sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4039simprd 495 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
41 f1cnv 6886 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
42 f1of 6862 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4340, 41, 423syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
44 cycpmco2.j . . . . . . . . . . 11 (𝜑𝐽 ∈ ran 𝑊)
4543, 44ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
46 wrddm 14569 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
4723, 46syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
4845, 47eleqtrd 2846 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
49 fzofzp1 13814 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5048, 49syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
514, 50eqeltrid 2848 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
52 pfxrn3 32907 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐸) = (𝑊 “ (0..^𝐸)))
5323, 51, 52syl2anc 583 . . . . . 6 (𝜑 → ran (𝑊 prefix 𝐸) = (𝑊 “ (0..^𝐸)))
54 s1rn 14647 . . . . . . 7 (𝐼𝐷 → ran ⟨“𝐼”⟩ = {𝐼})
558, 54syl 17 . . . . . 6 (𝜑 → ran ⟨“𝐼”⟩ = {𝐼})
5653, 55uneq12d 4192 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) = ((𝑊 “ (0..^𝐸)) ∪ {𝐼}))
5733, 56eqtrd 2780 . . . 4 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = ((𝑊 “ (0..^𝐸)) ∪ {𝐼}))
58 lencl 14581 . . . . . 6 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
59 nn0fz0 13682 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6059biimpi 216 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6123, 58, 603syl 18 . . . . 5 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
62 swrdrn3 32922 . . . . 5 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) = (𝑊 “ (𝐸..^(♯‘𝑊))))
6323, 51, 61, 62syl3anc 1371 . . . 4 (𝜑 → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) = (𝑊 “ (𝐸..^(♯‘𝑊))))
6457, 63uneq12d 4192 . . 3 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
6513, 31, 643eqtrd 2784 . 2 (𝜑 → ran 𝑈 = (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
66 fzosplit 13749 . . . . . 6 (𝐸 ∈ (0...(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊))))
6751, 66syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝑊)) = ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊))))
6867imaeq2d 6089 . . . 4 (𝜑 → (𝑊 “ (0..^(♯‘𝑊))) = (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))))
69 wrdf 14567 . . . . . . 7 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
7023, 69syl 17 . . . . . 6 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝐷)
7170ffnd 6748 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
72 fnima 6710 . . . . 5 (𝑊 Fn (0..^(♯‘𝑊)) → (𝑊 “ (0..^(♯‘𝑊))) = ran 𝑊)
7371, 72syl 17 . . . 4 (𝜑 → (𝑊 “ (0..^(♯‘𝑊))) = ran 𝑊)
74 elfzuz3 13581 . . . . . 6 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
75 fzoss2 13744 . . . . . 6 ((♯‘𝑊) ∈ (ℤ𝐸) → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
7651, 74, 753syl 18 . . . . 5 (𝜑 → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
77 fz0ssnn0 13679 . . . . . . . 8 (0...(♯‘𝑊)) ⊆ ℕ0
7877, 51sselid 4006 . . . . . . 7 (𝜑𝐸 ∈ ℕ0)
79 nn0uz 12945 . . . . . . 7 0 = (ℤ‘0)
8078, 79eleqtrdi 2854 . . . . . 6 (𝜑𝐸 ∈ (ℤ‘0))
81 fzoss1 13743 . . . . . 6 (𝐸 ∈ (ℤ‘0) → (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
8280, 81syl 17 . . . . 5 (𝜑 → (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
83 unima 6997 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (0..^𝐸) ⊆ (0..^(♯‘𝑊)) ∧ (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))) → (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))) = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8471, 76, 82, 83syl3anc 1371 . . . 4 (𝜑 → (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))) = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8568, 73, 843eqtr3d 2788 . . 3 (𝜑 → ran 𝑊 = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8685uneq1d 4190 . 2 (𝜑 → (ran 𝑊 ∪ {𝐼}) = (((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) ∪ {𝐼}))
871, 65, 863eqtr4a 2806 1 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  wss 3976  {csn 4648  cop 4654  cotp 4656  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  0cn0 12553  cuz 12903  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643   substr csubstr 14688   prefix cpfx 14718   splice csplice 14797  Basecbs 17258  SymGrpcsymg 19410  toCycctocyc 33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-csh 14837  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411  df-tocyc 33100
This theorem is referenced by:  cycpmco2lem5  33123  cycpmco2lem6  33124  cycpmco2lem7  33125  cycpmco2  33126
  Copyright terms: Public domain W3C validator