Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2rn Structured version   Visualization version   GIF version

Theorem cycpmco2rn 31294
Description: The orbit of the composition of a cyclic permutation and a well-chosen transposition is one element more than the orbit of the original permutation. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2rn (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))

Proof of Theorem cycpmco2rn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 un23 4098 . 2 (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) = (((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) ∪ {𝐼})
2 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
3 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
4 cycpmco2.e . . . . . . 7 𝐸 = ((𝑊𝐽) + 1)
5 ovexd 7290 . . . . . . 7 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
64, 5eqeltrid 2843 . . . . . 6 (𝜑𝐸 ∈ V)
7 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
87eldifad 3895 . . . . . . 7 (𝜑𝐼𝐷)
98s1cld 14236 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
10 splval 14392 . . . . . 6 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
113, 6, 6, 9, 10syl13anc 1370 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
122, 11syl5eq 2791 . . . 4 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1312rneqd 5836 . . 3 (𝜑 → ran 𝑈 = ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
14 ssrab2 4009 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
15 cycpmco2.d . . . . . . . . . 10 (𝜑𝐷𝑉)
16 cycpmco2.c . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
17 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
18 eqid 2738 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
1916, 17, 18tocycf 31286 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2015, 19syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2120fdmd 6595 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
223, 21eleqtrd 2841 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2314, 22sselid 3915 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
24 pfxcl 14318 . . . . . 6 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2523, 24syl 17 . . . . 5 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
26 ccatcl 14205 . . . . 5 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
2725, 9, 26syl2anc 583 . . . 4 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
28 swrdcl 14286 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2923, 28syl 17 . . . 4 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
30 ccatrn 14222 . . . 4 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
3127, 29, 30syl2anc 583 . . 3 (𝜑 → ran (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
32 ccatrn 14222 . . . . . 6 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
3325, 9, 32syl2anc 583 . . . . 5 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
34 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
35 dmeq 5801 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
36 eqidd 2739 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
3734, 35, 36f1eq123d 6692 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
3837elrab 3617 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
3922, 38sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4039simprd 495 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
41 f1cnv 6723 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
42 f1of 6700 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4340, 41, 423syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
44 cycpmco2.j . . . . . . . . . . 11 (𝜑𝐽 ∈ ran 𝑊)
4543, 44ffvelrnd 6944 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
46 wrddm 14152 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
4723, 46syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
4845, 47eleqtrd 2841 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
49 fzofzp1 13412 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5048, 49syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
514, 50eqeltrid 2843 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
52 pfxrn3 31117 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐸) = (𝑊 “ (0..^𝐸)))
5323, 51, 52syl2anc 583 . . . . . 6 (𝜑 → ran (𝑊 prefix 𝐸) = (𝑊 “ (0..^𝐸)))
54 s1rn 14232 . . . . . . 7 (𝐼𝐷 → ran ⟨“𝐼”⟩ = {𝐼})
558, 54syl 17 . . . . . 6 (𝜑 → ran ⟨“𝐼”⟩ = {𝐼})
5653, 55uneq12d 4094 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) = ((𝑊 “ (0..^𝐸)) ∪ {𝐼}))
5733, 56eqtrd 2778 . . . 4 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = ((𝑊 “ (0..^𝐸)) ∪ {𝐼}))
58 lencl 14164 . . . . . 6 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
59 nn0fz0 13283 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6059biimpi 215 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6123, 58, 603syl 18 . . . . 5 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
62 swrdrn3 31129 . . . . 5 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) = (𝑊 “ (𝐸..^(♯‘𝑊))))
6323, 51, 61, 62syl3anc 1369 . . . 4 (𝜑 → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) = (𝑊 “ (𝐸..^(♯‘𝑊))))
6457, 63uneq12d 4094 . . 3 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∪ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
6513, 31, 643eqtrd 2782 . 2 (𝜑 → ran 𝑈 = (((𝑊 “ (0..^𝐸)) ∪ {𝐼}) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
66 fzosplit 13348 . . . . . 6 (𝐸 ∈ (0...(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊))))
6751, 66syl 17 . . . . 5 (𝜑 → (0..^(♯‘𝑊)) = ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊))))
6867imaeq2d 5958 . . . 4 (𝜑 → (𝑊 “ (0..^(♯‘𝑊))) = (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))))
69 wrdf 14150 . . . . . . 7 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
7023, 69syl 17 . . . . . 6 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝐷)
7170ffnd 6585 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
72 fnima 6547 . . . . 5 (𝑊 Fn (0..^(♯‘𝑊)) → (𝑊 “ (0..^(♯‘𝑊))) = ran 𝑊)
7371, 72syl 17 . . . 4 (𝜑 → (𝑊 “ (0..^(♯‘𝑊))) = ran 𝑊)
74 elfzuz3 13182 . . . . . 6 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
75 fzoss2 13343 . . . . . 6 ((♯‘𝑊) ∈ (ℤ𝐸) → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
7651, 74, 753syl 18 . . . . 5 (𝜑 → (0..^𝐸) ⊆ (0..^(♯‘𝑊)))
77 fz0ssnn0 13280 . . . . . . . 8 (0...(♯‘𝑊)) ⊆ ℕ0
7877, 51sselid 3915 . . . . . . 7 (𝜑𝐸 ∈ ℕ0)
79 nn0uz 12549 . . . . . . 7 0 = (ℤ‘0)
8078, 79eleqtrdi 2849 . . . . . 6 (𝜑𝐸 ∈ (ℤ‘0))
81 fzoss1 13342 . . . . . 6 (𝐸 ∈ (ℤ‘0) → (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
8280, 81syl 17 . . . . 5 (𝜑 → (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)))
83 unima 6825 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (0..^𝐸) ⊆ (0..^(♯‘𝑊)) ∧ (𝐸..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))) → (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))) = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8471, 76, 82, 83syl3anc 1369 . . . 4 (𝜑 → (𝑊 “ ((0..^𝐸) ∪ (𝐸..^(♯‘𝑊)))) = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8568, 73, 843eqtr3d 2786 . . 3 (𝜑 → ran 𝑊 = ((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))))
8685uneq1d 4092 . 2 (𝜑 → (ran 𝑊 ∪ {𝐼}) = (((𝑊 “ (0..^𝐸)) ∪ (𝑊 “ (𝐸..^(♯‘𝑊)))) ∪ {𝐼}))
871, 65, 863eqtr4a 2805 1 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  wss 3883  {csn 4558  cop 4564  cotp 4566  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228   substr csubstr 14281   prefix cpfx 14311   splice csplice 14390  Basecbs 16840  SymGrpcsymg 18889  toCycctocyc 31275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-csh 14430  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-efmnd 18423  df-symg 18890  df-tocyc 31276
This theorem is referenced by:  cycpmco2lem5  31299  cycpmco2lem6  31300  cycpmco2lem7  31301  cycpmco2  31302
  Copyright terms: Public domain W3C validator