MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oun2prg Structured version   Visualization version   GIF version

Theorem f1oun2prg 13999
Description: A union of unordered pairs of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
f1oun2prg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))

Proof of Theorem f1oun2prg
StepHypRef Expression
1 simpl 475 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
2 0z 11673 . . . . . . 7 0 ∈ ℤ
31, 2jctil 516 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (0 ∈ ℤ ∧ 𝐴𝑉))
43ad2antrr 718 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (0 ∈ ℤ ∧ 𝐴𝑉))
5 simpr 478 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
6 1z 11693 . . . . . . 7 1 ∈ ℤ
75, 6jctil 516 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (1 ∈ ℤ ∧ 𝐵𝑊))
87ad2antrr 718 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (1 ∈ ℤ ∧ 𝐵𝑊))
94, 8jca 508 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ((0 ∈ ℤ ∧ 𝐴𝑉) ∧ (1 ∈ ℤ ∧ 𝐵𝑊)))
10 id 22 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
11103ad2ant1 1164 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐴𝐷) → 𝐴𝐵)
12 0ne1 11380 . . . . . . 7 0 ≠ 1
1311, 12jctil 516 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐴𝐷) → (0 ≠ 1 ∧ 𝐴𝐵))
1413adantr 473 . . . . 5 (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (0 ≠ 1 ∧ 𝐴𝐵))
1514adantl 474 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (0 ≠ 1 ∧ 𝐴𝐵))
16 f1oprg 6398 . . . 4 (((0 ∈ ℤ ∧ 𝐴𝑉) ∧ (1 ∈ ℤ ∧ 𝐵𝑊)) → ((0 ≠ 1 ∧ 𝐴𝐵) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵}))
179, 15, 16sylc 65 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵})
18 simpl 475 . . . . . . . 8 ((𝐶𝑋𝐷𝑌) → 𝐶𝑋)
19 2nn 11382 . . . . . . . 8 2 ∈ ℕ
2018, 19jctil 516 . . . . . . 7 ((𝐶𝑋𝐷𝑌) → (2 ∈ ℕ ∧ 𝐶𝑋))
2120adantl 474 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (2 ∈ ℕ ∧ 𝐶𝑋))
22 simpr 478 . . . . . . . 8 ((𝐶𝑋𝐷𝑌) → 𝐷𝑌)
23 3nn 11388 . . . . . . . 8 3 ∈ ℕ
2422, 23jctil 516 . . . . . . 7 ((𝐶𝑋𝐷𝑌) → (3 ∈ ℕ ∧ 𝐷𝑌))
2524adantl 474 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (3 ∈ ℕ ∧ 𝐷𝑌))
2621, 25jca 508 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((2 ∈ ℕ ∧ 𝐶𝑋) ∧ (3 ∈ ℕ ∧ 𝐷𝑌)))
2726adantr 473 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ((2 ∈ ℕ ∧ 𝐶𝑋) ∧ (3 ∈ ℕ ∧ 𝐷𝑌)))
28 id 22 . . . . . . . 8 (𝐶𝐷𝐶𝐷)
29283ad2ant3 1166 . . . . . . 7 ((𝐵𝐶𝐵𝐷𝐶𝐷) → 𝐶𝐷)
30 2re 11383 . . . . . . . 8 2 ∈ ℝ
31 2lt3 11488 . . . . . . . 8 2 < 3
3230, 31ltneii 10438 . . . . . . 7 2 ≠ 3
3329, 32jctil 516 . . . . . 6 ((𝐵𝐶𝐵𝐷𝐶𝐷) → (2 ≠ 3 ∧ 𝐶𝐷))
3433adantl 474 . . . . 5 (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (2 ≠ 3 ∧ 𝐶𝐷))
3534adantl 474 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (2 ≠ 3 ∧ 𝐶𝐷))
36 f1oprg 6398 . . . 4 (((2 ∈ ℕ ∧ 𝐶𝑋) ∧ (3 ∈ ℕ ∧ 𝐷𝑌)) → ((2 ≠ 3 ∧ 𝐶𝐷) → {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}:{2, 3}–1-1-onto→{𝐶, 𝐷}))
3727, 35, 36sylc 65 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}:{2, 3}–1-1-onto→{𝐶, 𝐷})
38 disjsn2 4435 . . . . . . . . . 10 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
39383ad2ant2 1165 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐴𝐷) → ({𝐴} ∩ {𝐶}) = ∅)
40 disjsn2 4435 . . . . . . . . . 10 (𝐵𝐶 → ({𝐵} ∩ {𝐶}) = ∅)
41403ad2ant1 1164 . . . . . . . . 9 ((𝐵𝐶𝐵𝐷𝐶𝐷) → ({𝐵} ∩ {𝐶}) = ∅)
4239, 41anim12i 607 . . . . . . . 8 (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
4342adantl 474 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
44 df-pr 4369 . . . . . . . . . 10 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4544ineq1i 4006 . . . . . . . . 9 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶})
4645eqeq1i 2802 . . . . . . . 8 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = ∅)
47 undisj1 4222 . . . . . . . 8 ((({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅) ↔ (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = ∅)
4846, 47bitr4i 270 . . . . . . 7 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
4943, 48sylibr 226 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
50 disjsn2 4435 . . . . . . . . . 10 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
51503ad2ant3 1166 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐴𝐷) → ({𝐴} ∩ {𝐷}) = ∅)
52 disjsn2 4435 . . . . . . . . . 10 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
53523ad2ant2 1165 . . . . . . . . 9 ((𝐵𝐶𝐵𝐷𝐶𝐷) → ({𝐵} ∩ {𝐷}) = ∅)
5451, 53anim12i 607 . . . . . . . 8 (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
5554adantl 474 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
5644ineq1i 4006 . . . . . . . . 9 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∪ {𝐵}) ∩ {𝐷})
5756eqeq1i 2802 . . . . . . . 8 (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ↔ (({𝐴} ∪ {𝐵}) ∩ {𝐷}) = ∅)
58 undisj1 4222 . . . . . . . 8 ((({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅) ↔ (({𝐴} ∪ {𝐵}) ∩ {𝐷}) = ∅)
5957, 58bitr4i 270 . . . . . . 7 (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ↔ (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
6055, 59sylibr 226 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
6149, 60jca 508 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐷}) = ∅))
62 undisj2 4223 . . . . . 6 ((({𝐴, 𝐵} ∩ {𝐶}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐷}) = ∅) ↔ ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = ∅)
63 df-pr 4369 . . . . . . . . 9 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
6463eqcomi 2806 . . . . . . . 8 ({𝐶} ∪ {𝐷}) = {𝐶, 𝐷}
6564ineq2i 4007 . . . . . . 7 ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = ({𝐴, 𝐵} ∩ {𝐶, 𝐷})
6665eqeq1i 2802 . . . . . 6 (({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = ∅ ↔ ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
6762, 66bitri 267 . . . . 5 ((({𝐴, 𝐵} ∩ {𝐶}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐷}) = ∅) ↔ ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
6861, 67sylib 210 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
69 df-pr 4369 . . . . . . . . 9 {0, 1} = ({0} ∪ {1})
7069eqcomi 2806 . . . . . . . 8 ({0} ∪ {1}) = {0, 1}
7170ineq1i 4006 . . . . . . 7 (({0} ∪ {1}) ∩ {2}) = ({0, 1} ∩ {2})
72 0ne2 11523 . . . . . . . . . 10 0 ≠ 2
73 disjsn2 4435 . . . . . . . . . 10 (0 ≠ 2 → ({0} ∩ {2}) = ∅)
7472, 73ax-mp 5 . . . . . . . . 9 ({0} ∩ {2}) = ∅
75 1ne2 11524 . . . . . . . . . 10 1 ≠ 2
76 disjsn2 4435 . . . . . . . . . 10 (1 ≠ 2 → ({1} ∩ {2}) = ∅)
7775, 76ax-mp 5 . . . . . . . . 9 ({1} ∩ {2}) = ∅
7874, 77pm3.2i 463 . . . . . . . 8 (({0} ∩ {2}) = ∅ ∧ ({1} ∩ {2}) = ∅)
79 undisj1 4222 . . . . . . . 8 ((({0} ∩ {2}) = ∅ ∧ ({1} ∩ {2}) = ∅) ↔ (({0} ∪ {1}) ∩ {2}) = ∅)
8078, 79mpbi 222 . . . . . . 7 (({0} ∪ {1}) ∩ {2}) = ∅
8171, 80eqtr3i 2821 . . . . . 6 ({0, 1} ∩ {2}) = ∅
8270ineq1i 4006 . . . . . . 7 (({0} ∪ {1}) ∩ {3}) = ({0, 1} ∩ {3})
83 3ne0 11422 . . . . . . . . . . 11 3 ≠ 0
8483necomi 3023 . . . . . . . . . 10 0 ≠ 3
85 disjsn2 4435 . . . . . . . . . 10 (0 ≠ 3 → ({0} ∩ {3}) = ∅)
8684, 85ax-mp 5 . . . . . . . . 9 ({0} ∩ {3}) = ∅
87 1re 10326 . . . . . . . . . . 11 1 ∈ ℝ
88 1lt3 11489 . . . . . . . . . . 11 1 < 3
8987, 88ltneii 10438 . . . . . . . . . 10 1 ≠ 3
90 disjsn2 4435 . . . . . . . . . 10 (1 ≠ 3 → ({1} ∩ {3}) = ∅)
9189, 90ax-mp 5 . . . . . . . . 9 ({1} ∩ {3}) = ∅
9286, 91pm3.2i 463 . . . . . . . 8 (({0} ∩ {3}) = ∅ ∧ ({1} ∩ {3}) = ∅)
93 undisj1 4222 . . . . . . . 8 ((({0} ∩ {3}) = ∅ ∧ ({1} ∩ {3}) = ∅) ↔ (({0} ∪ {1}) ∩ {3}) = ∅)
9492, 93mpbi 222 . . . . . . 7 (({0} ∪ {1}) ∩ {3}) = ∅
9582, 94eqtr3i 2821 . . . . . 6 ({0, 1} ∩ {3}) = ∅
9681, 95pm3.2i 463 . . . . 5 (({0, 1} ∩ {2}) = ∅ ∧ ({0, 1} ∩ {3}) = ∅)
97 undisj2 4223 . . . . . 6 ((({0, 1} ∩ {2}) = ∅ ∧ ({0, 1} ∩ {3}) = ∅) ↔ ({0, 1} ∩ ({2} ∪ {3})) = ∅)
98 df-pr 4369 . . . . . . . . 9 {2, 3} = ({2} ∪ {3})
9998eqcomi 2806 . . . . . . . 8 ({2} ∪ {3}) = {2, 3}
10099ineq2i 4007 . . . . . . 7 ({0, 1} ∩ ({2} ∪ {3})) = ({0, 1} ∩ {2, 3})
101100eqeq1i 2802 . . . . . 6 (({0, 1} ∩ ({2} ∪ {3})) = ∅ ↔ ({0, 1} ∩ {2, 3}) = ∅)
10297, 101bitri 267 . . . . 5 ((({0, 1} ∩ {2}) = ∅ ∧ ({0, 1} ∩ {3}) = ∅) ↔ ({0, 1} ∩ {2, 3}) = ∅)
10396, 102mpbi 222 . . . 4 ({0, 1} ∩ {2, 3}) = ∅
10468, 103jctil 516 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (({0, 1} ∩ {2, 3}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅))
105 f1oun 6373 . . 3 ((({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵} ∧ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}:{2, 3}–1-1-onto→{𝐶, 𝐷}) ∧ (({0, 1} ∩ {2, 3}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
10617, 37, 104, 105syl21anc 867 . 2 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
107106ex 402 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2969  cun 3765  cin 3766  c0 4113  {csn 4366  {cpr 4368  cop 4372  1-1-ontowf1o 6098  0cc0 10222  1c1 10223  cn 11310  2c2 11364  3c3 11365  cz 11662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-z 11663
This theorem is referenced by:  s4f1o  14000
  Copyright terms: Public domain W3C validator