MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oun2prg Structured version   Visualization version   GIF version

Theorem f1oun2prg 14630
Description: A union of unordered pairs of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
f1oun2prg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))

Proof of Theorem f1oun2prg
StepHypRef Expression
1 simpl 483 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
2 0z 12330 . . . . . . 7 0 ∈ ℤ
31, 2jctil 520 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (0 ∈ ℤ ∧ 𝐴𝑉))
43ad2antrr 723 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (0 ∈ ℤ ∧ 𝐴𝑉))
5 simpr 485 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
6 1z 12350 . . . . . . 7 1 ∈ ℤ
75, 6jctil 520 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (1 ∈ ℤ ∧ 𝐵𝑊))
87ad2antrr 723 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (1 ∈ ℤ ∧ 𝐵𝑊))
94, 8jca 512 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ((0 ∈ ℤ ∧ 𝐴𝑉) ∧ (1 ∈ ℤ ∧ 𝐵𝑊)))
10 id 22 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
11103ad2ant1 1132 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐴𝐷) → 𝐴𝐵)
12 0ne1 12044 . . . . . . 7 0 ≠ 1
1311, 12jctil 520 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐴𝐷) → (0 ≠ 1 ∧ 𝐴𝐵))
1413adantr 481 . . . . 5 (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (0 ≠ 1 ∧ 𝐴𝐵))
1514adantl 482 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (0 ≠ 1 ∧ 𝐴𝐵))
16 f1oprg 6761 . . . 4 (((0 ∈ ℤ ∧ 𝐴𝑉) ∧ (1 ∈ ℤ ∧ 𝐵𝑊)) → ((0 ≠ 1 ∧ 𝐴𝐵) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵}))
179, 15, 16sylc 65 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → {⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵})
18 simpl 483 . . . . . . . 8 ((𝐶𝑋𝐷𝑌) → 𝐶𝑋)
19 2nn 12046 . . . . . . . 8 2 ∈ ℕ
2018, 19jctil 520 . . . . . . 7 ((𝐶𝑋𝐷𝑌) → (2 ∈ ℕ ∧ 𝐶𝑋))
2120adantl 482 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (2 ∈ ℕ ∧ 𝐶𝑋))
22 simpr 485 . . . . . . . 8 ((𝐶𝑋𝐷𝑌) → 𝐷𝑌)
23 3nn 12052 . . . . . . . 8 3 ∈ ℕ
2422, 23jctil 520 . . . . . . 7 ((𝐶𝑋𝐷𝑌) → (3 ∈ ℕ ∧ 𝐷𝑌))
2524adantl 482 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (3 ∈ ℕ ∧ 𝐷𝑌))
2621, 25jca 512 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((2 ∈ ℕ ∧ 𝐶𝑋) ∧ (3 ∈ ℕ ∧ 𝐷𝑌)))
2726adantr 481 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ((2 ∈ ℕ ∧ 𝐶𝑋) ∧ (3 ∈ ℕ ∧ 𝐷𝑌)))
28 id 22 . . . . . . . 8 (𝐶𝐷𝐶𝐷)
29283ad2ant3 1134 . . . . . . 7 ((𝐵𝐶𝐵𝐷𝐶𝐷) → 𝐶𝐷)
30 2re 12047 . . . . . . . 8 2 ∈ ℝ
31 2lt3 12145 . . . . . . . 8 2 < 3
3230, 31ltneii 11088 . . . . . . 7 2 ≠ 3
3329, 32jctil 520 . . . . . 6 ((𝐵𝐶𝐵𝐷𝐶𝐷) → (2 ≠ 3 ∧ 𝐶𝐷))
3433adantl 482 . . . . 5 (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (2 ≠ 3 ∧ 𝐶𝐷))
3534adantl 482 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (2 ≠ 3 ∧ 𝐶𝐷))
36 f1oprg 6761 . . . 4 (((2 ∈ ℕ ∧ 𝐶𝑋) ∧ (3 ∈ ℕ ∧ 𝐷𝑌)) → ((2 ≠ 3 ∧ 𝐶𝐷) → {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}:{2, 3}–1-1-onto→{𝐶, 𝐷}))
3727, 35, 36sylc 65 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}:{2, 3}–1-1-onto→{𝐶, 𝐷})
38 disjsn2 4648 . . . . . . . . . 10 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
39383ad2ant2 1133 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐴𝐷) → ({𝐴} ∩ {𝐶}) = ∅)
40 disjsn2 4648 . . . . . . . . . 10 (𝐵𝐶 → ({𝐵} ∩ {𝐶}) = ∅)
41403ad2ant1 1132 . . . . . . . . 9 ((𝐵𝐶𝐵𝐷𝐶𝐷) → ({𝐵} ∩ {𝐶}) = ∅)
4239, 41anim12i 613 . . . . . . . 8 (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
4342adantl 482 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
44 df-pr 4564 . . . . . . . . . 10 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
4544ineq1i 4142 . . . . . . . . 9 ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶})
4645eqeq1i 2743 . . . . . . . 8 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = ∅)
47 undisj1 4395 . . . . . . . 8 ((({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅) ↔ (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = ∅)
4846, 47bitr4i 277 . . . . . . 7 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
4943, 48sylibr 233 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
50 disjsn2 4648 . . . . . . . . . 10 (𝐴𝐷 → ({𝐴} ∩ {𝐷}) = ∅)
51503ad2ant3 1134 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐴𝐷) → ({𝐴} ∩ {𝐷}) = ∅)
52 disjsn2 4648 . . . . . . . . . 10 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
53523ad2ant2 1133 . . . . . . . . 9 ((𝐵𝐶𝐵𝐷𝐶𝐷) → ({𝐵} ∩ {𝐷}) = ∅)
5451, 53anim12i 613 . . . . . . . 8 (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
5554adantl 482 . . . . . . 7 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
5644ineq1i 4142 . . . . . . . . 9 ({𝐴, 𝐵} ∩ {𝐷}) = (({𝐴} ∪ {𝐵}) ∩ {𝐷})
5756eqeq1i 2743 . . . . . . . 8 (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ↔ (({𝐴} ∪ {𝐵}) ∩ {𝐷}) = ∅)
58 undisj1 4395 . . . . . . . 8 ((({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅) ↔ (({𝐴} ∪ {𝐵}) ∩ {𝐷}) = ∅)
5957, 58bitr4i 277 . . . . . . 7 (({𝐴, 𝐵} ∩ {𝐷}) = ∅ ↔ (({𝐴} ∩ {𝐷}) = ∅ ∧ ({𝐵} ∩ {𝐷}) = ∅))
6055, 59sylibr 233 . . . . . 6 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({𝐴, 𝐵} ∩ {𝐷}) = ∅)
6149, 60jca 512 . . . . 5 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐷}) = ∅))
62 undisj2 4396 . . . . . 6 ((({𝐴, 𝐵} ∩ {𝐶}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐷}) = ∅) ↔ ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = ∅)
63 df-pr 4564 . . . . . . . . 9 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
6463eqcomi 2747 . . . . . . . 8 ({𝐶} ∪ {𝐷}) = {𝐶, 𝐷}
6564ineq2i 4143 . . . . . . 7 ({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = ({𝐴, 𝐵} ∩ {𝐶, 𝐷})
6665eqeq1i 2743 . . . . . 6 (({𝐴, 𝐵} ∩ ({𝐶} ∪ {𝐷})) = ∅ ↔ ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
6762, 66bitri 274 . . . . 5 ((({𝐴, 𝐵} ∩ {𝐶}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐷}) = ∅) ↔ ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
6861, 67sylib 217 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
69 df-pr 4564 . . . . . . . . 9 {0, 1} = ({0} ∪ {1})
7069eqcomi 2747 . . . . . . . 8 ({0} ∪ {1}) = {0, 1}
7170ineq1i 4142 . . . . . . 7 (({0} ∪ {1}) ∩ {2}) = ({0, 1} ∩ {2})
72 0ne2 12180 . . . . . . . . . 10 0 ≠ 2
73 disjsn2 4648 . . . . . . . . . 10 (0 ≠ 2 → ({0} ∩ {2}) = ∅)
7472, 73ax-mp 5 . . . . . . . . 9 ({0} ∩ {2}) = ∅
75 1ne2 12181 . . . . . . . . . 10 1 ≠ 2
76 disjsn2 4648 . . . . . . . . . 10 (1 ≠ 2 → ({1} ∩ {2}) = ∅)
7775, 76ax-mp 5 . . . . . . . . 9 ({1} ∩ {2}) = ∅
7874, 77pm3.2i 471 . . . . . . . 8 (({0} ∩ {2}) = ∅ ∧ ({1} ∩ {2}) = ∅)
79 undisj1 4395 . . . . . . . 8 ((({0} ∩ {2}) = ∅ ∧ ({1} ∩ {2}) = ∅) ↔ (({0} ∪ {1}) ∩ {2}) = ∅)
8078, 79mpbi 229 . . . . . . 7 (({0} ∪ {1}) ∩ {2}) = ∅
8171, 80eqtr3i 2768 . . . . . 6 ({0, 1} ∩ {2}) = ∅
8270ineq1i 4142 . . . . . . 7 (({0} ∪ {1}) ∩ {3}) = ({0, 1} ∩ {3})
83 3ne0 12079 . . . . . . . . . . 11 3 ≠ 0
8483necomi 2998 . . . . . . . . . 10 0 ≠ 3
85 disjsn2 4648 . . . . . . . . . 10 (0 ≠ 3 → ({0} ∩ {3}) = ∅)
8684, 85ax-mp 5 . . . . . . . . 9 ({0} ∩ {3}) = ∅
87 1re 10975 . . . . . . . . . . 11 1 ∈ ℝ
88 1lt3 12146 . . . . . . . . . . 11 1 < 3
8987, 88ltneii 11088 . . . . . . . . . 10 1 ≠ 3
90 disjsn2 4648 . . . . . . . . . 10 (1 ≠ 3 → ({1} ∩ {3}) = ∅)
9189, 90ax-mp 5 . . . . . . . . 9 ({1} ∩ {3}) = ∅
9286, 91pm3.2i 471 . . . . . . . 8 (({0} ∩ {3}) = ∅ ∧ ({1} ∩ {3}) = ∅)
93 undisj1 4395 . . . . . . . 8 ((({0} ∩ {3}) = ∅ ∧ ({1} ∩ {3}) = ∅) ↔ (({0} ∪ {1}) ∩ {3}) = ∅)
9492, 93mpbi 229 . . . . . . 7 (({0} ∪ {1}) ∩ {3}) = ∅
9582, 94eqtr3i 2768 . . . . . 6 ({0, 1} ∩ {3}) = ∅
9681, 95pm3.2i 471 . . . . 5 (({0, 1} ∩ {2}) = ∅ ∧ ({0, 1} ∩ {3}) = ∅)
97 undisj2 4396 . . . . . 6 ((({0, 1} ∩ {2}) = ∅ ∧ ({0, 1} ∩ {3}) = ∅) ↔ ({0, 1} ∩ ({2} ∪ {3})) = ∅)
98 df-pr 4564 . . . . . . . . 9 {2, 3} = ({2} ∪ {3})
9998eqcomi 2747 . . . . . . . 8 ({2} ∪ {3}) = {2, 3}
10099ineq2i 4143 . . . . . . 7 ({0, 1} ∩ ({2} ∪ {3})) = ({0, 1} ∩ {2, 3})
101100eqeq1i 2743 . . . . . 6 (({0, 1} ∩ ({2} ∪ {3})) = ∅ ↔ ({0, 1} ∩ {2, 3}) = ∅)
10297, 101bitri 274 . . . . 5 ((({0, 1} ∩ {2}) = ∅ ∧ ({0, 1} ∩ {3}) = ∅) ↔ ({0, 1} ∩ {2, 3}) = ∅)
10396, 102mpbi 229 . . . 4 ({0, 1} ∩ {2, 3}) = ∅
10468, 103jctil 520 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → (({0, 1} ∩ {2, 3}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅))
105 f1oun 6735 . . 3 ((({⟨0, 𝐴⟩, ⟨1, 𝐵⟩}:{0, 1}–1-1-onto→{𝐴, 𝐵} ∧ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}:{2, 3}–1-1-onto→{𝐶, 𝐷}) ∧ (({0, 1} ∩ {2, 3}) = ∅ ∧ ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
10617, 37, 104, 105syl21anc 835 . 2 ((((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷))) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))
107106ex 413 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cun 3885  cin 3886  c0 4256  {csn 4561  {cpr 4563  cop 4567  1-1-ontowf1o 6432  0cc0 10871  1c1 10872  cn 11973  2c2 12028  3c3 12029  cz 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-z 12320
This theorem is referenced by:  s4f1o  14631
  Copyright terms: Public domain W3C validator