![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undisj1 | Structured version Visualization version GIF version |
Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.) |
Ref | Expression |
---|---|
undisj1 | ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un00 4207 | . 2 ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ∅) | |
2 | indir 4076 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | |
3 | 2 | eqeq1i 2804 | . 2 ⊢ (((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅ ↔ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ∅) |
4 | 1, 3 | bitr4i 270 | 1 ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ∪ cun 3767 ∩ cin 3768 ∅c0 4115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 |
This theorem is referenced by: disjtpsn 4440 disjtp2 4441 funtp 6157 prinfzo0 12762 f1oun2prg 14002 cnfldfun 20080 |
Copyright terms: Public domain | W3C validator |