MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undisj1 Structured version   Visualization version   GIF version

Theorem undisj1 4461
Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
undisj1 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐵) ∩ 𝐶) = ∅)

Proof of Theorem undisj1
StepHypRef Expression
1 un00 4444 . 2 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐶) ∪ (𝐵𝐶)) = ∅)
2 indir 4285 . . 3 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
32eqeq1i 2741 . 2 (((𝐴𝐵) ∩ 𝐶) = ∅ ↔ ((𝐴𝐶) ∪ (𝐵𝐶)) = ∅)
41, 3bitr4i 278 1 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐵) ∩ 𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  cun 3948  cin 3949  c0 4332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333
This theorem is referenced by:  disjtpsn  4714  disjtp2  4715  funtp  6622  prinfzo0  13739  hash7g  14526  f1oun2prg  14957  cnfldfunALT  21380  cnfldfunALTOLD  21393  cnfldfunALTOLDOLD  21394
  Copyright terms: Public domain W3C validator