MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undisj1 Structured version   Visualization version   GIF version

Theorem undisj1 4428
Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
undisj1 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐵) ∩ 𝐶) = ∅)

Proof of Theorem undisj1
StepHypRef Expression
1 un00 4411 . 2 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐶) ∪ (𝐵𝐶)) = ∅)
2 indir 4252 . . 3 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
32eqeq1i 2735 . 2 (((𝐴𝐵) ∩ 𝐶) = ∅ ↔ ((𝐴𝐶) ∪ (𝐵𝐶)) = ∅)
41, 3bitr4i 278 1 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐵) ∩ 𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  cun 3915  cin 3916  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300
This theorem is referenced by:  disjtpsn  4682  disjtp2  4683  funtp  6576  prinfzo0  13666  hash7g  14458  f1oun2prg  14890  cnfldfunALT  21286  cnfldfunALTOLD  21299
  Copyright terms: Public domain W3C validator