MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undisj1 Structured version   Visualization version   GIF version

Theorem undisj1 4461
Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
undisj1 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐵) ∩ 𝐶) = ∅)

Proof of Theorem undisj1
StepHypRef Expression
1 un00 4442 . 2 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐶) ∪ (𝐵𝐶)) = ∅)
2 indir 4275 . . 3 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
32eqeq1i 2736 . 2 (((𝐴𝐵) ∩ 𝐶) = ∅ ↔ ((𝐴𝐶) ∪ (𝐵𝐶)) = ∅)
41, 3bitr4i 278 1 (((𝐴𝐶) = ∅ ∧ (𝐵𝐶) = ∅) ↔ ((𝐴𝐵) ∩ 𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  cun 3946  cin 3947  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323
This theorem is referenced by:  disjtpsn  4719  disjtp2  4720  funtp  6605  prinfzo0  13676  f1oun2prg  14873  cnfldfunALT  21158  cnfldfunALTOLD  21159  gg-cnfldfunALT  35485
  Copyright terms: Public domain W3C validator