| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undisj1 | Structured version Visualization version GIF version | ||
| Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.) |
| Ref | Expression |
|---|---|
| undisj1 | ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un00 4398 | . 2 ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ∅) | |
| 2 | indir 4239 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | |
| 3 | 2 | eqeq1i 2734 | . 2 ⊢ (((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅ ↔ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) = ∅) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (((𝐴 ∩ 𝐶) = ∅ ∧ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∪ cun 3903 ∩ cin 3904 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 |
| This theorem is referenced by: disjtpsn 4669 disjtp2 4670 funtp 6543 prinfzo0 13620 hash7g 14412 f1oun2prg 14843 cnfldfunALT 21295 cnfldfunALTOLD 21308 |
| Copyright terms: Public domain | W3C validator |