MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtp2 Structured version   Visualization version   GIF version

Theorem disjtp2 4716
Description: Two completely distinct unordered triples are disjoint. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtp2 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ∅)

Proof of Theorem disjtp2
StepHypRef Expression
1 df-tp 4631 . . 3 {𝐷, 𝐸, 𝐹} = ({𝐷, 𝐸} ∪ {𝐹})
21ineq2i 4217 . 2 ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ({𝐴, 𝐵, 𝐶} ∩ ({𝐷, 𝐸} ∪ {𝐹}))
3 df-tp 4631 . . . . . 6 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
43ineq1i 4216 . . . . 5 ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷, 𝐸})
5 3simpa 1149 . . . . . . . . 9 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴𝐷𝐵𝐷))
6 3simpa 1149 . . . . . . . . 9 ((𝐴𝐸𝐵𝐸𝐶𝐸) → (𝐴𝐸𝐵𝐸))
7 disjpr2 4713 . . . . . . . . 9 (((𝐴𝐷𝐵𝐷) ∧ (𝐴𝐸𝐵𝐸)) → ({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅)
85, 6, 7syl2an 596 . . . . . . . 8 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸)) → ({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅)
983adant3 1133 . . . . . . 7 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅)
10 incom 4209 . . . . . . . 8 ({𝐶} ∩ {𝐷, 𝐸}) = ({𝐷, 𝐸} ∩ {𝐶})
11 necom 2994 . . . . . . . . . . . 12 (𝐶𝐷𝐷𝐶)
1211biimpi 216 . . . . . . . . . . 11 (𝐶𝐷𝐷𝐶)
13123ad2ant3 1136 . . . . . . . . . 10 ((𝐴𝐷𝐵𝐷𝐶𝐷) → 𝐷𝐶)
14 necom 2994 . . . . . . . . . . . 12 (𝐶𝐸𝐸𝐶)
1514biimpi 216 . . . . . . . . . . 11 (𝐶𝐸𝐸𝐶)
16153ad2ant3 1136 . . . . . . . . . 10 ((𝐴𝐸𝐵𝐸𝐶𝐸) → 𝐸𝐶)
17 disjprsn 4714 . . . . . . . . . 10 ((𝐷𝐶𝐸𝐶) → ({𝐷, 𝐸} ∩ {𝐶}) = ∅)
1813, 16, 17syl2an 596 . . . . . . . . 9 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸)) → ({𝐷, 𝐸} ∩ {𝐶}) = ∅)
19183adant3 1133 . . . . . . . 8 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐷, 𝐸} ∩ {𝐶}) = ∅)
2010, 19eqtrid 2789 . . . . . . 7 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐶} ∩ {𝐷, 𝐸}) = ∅)
219, 20jca 511 . . . . . 6 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → (({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐶} ∩ {𝐷, 𝐸}) = ∅))
22 undisj1 4462 . . . . . 6 ((({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐶} ∩ {𝐷, 𝐸}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷, 𝐸}) = ∅)
2321, 22sylib 218 . . . . 5 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷, 𝐸}) = ∅)
244, 23eqtrid 2789 . . . 4 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = ∅)
25 disjtpsn 4715 . . . . 5 ((𝐴𝐹𝐵𝐹𝐶𝐹) → ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅)
26253ad2ant3 1136 . . . 4 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅)
2724, 26jca 511 . . 3 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → (({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅))
28 undisj2 4463 . . 3 ((({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅) ↔ ({𝐴, 𝐵, 𝐶} ∩ ({𝐷, 𝐸} ∪ {𝐹})) = ∅)
2927, 28sylib 218 . 2 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ ({𝐷, 𝐸} ∪ {𝐹})) = ∅)
302, 29eqtrid 2789 1 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wne 2940  cun 3949  cin 3950  c0 4333  {csn 4626  {cpr 4628  {ctp 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-sn 4627  df-pr 4629  df-tp 4631
This theorem is referenced by:  hash7g  14525  cnfldfunALT  21379  cnfldfunALTOLD  21392  cnfldfunALTOLDOLD  21393
  Copyright terms: Public domain W3C validator