MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtp2 Structured version   Visualization version   GIF version

Theorem disjtp2 4651
Description: Two completely distinct unordered triples are disjoint. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtp2 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ∅)

Proof of Theorem disjtp2
StepHypRef Expression
1 df-tp 4569 . . 3 {𝐷, 𝐸, 𝐹} = ({𝐷, 𝐸} ∪ {𝐹})
21ineq2i 4190 . 2 ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ({𝐴, 𝐵, 𝐶} ∩ ({𝐷, 𝐸} ∪ {𝐹}))
3 df-tp 4569 . . . . . 6 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
43ineq1i 4189 . . . . 5 ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷, 𝐸})
5 3simpa 1142 . . . . . . . . 9 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴𝐷𝐵𝐷))
6 3simpa 1142 . . . . . . . . 9 ((𝐴𝐸𝐵𝐸𝐶𝐸) → (𝐴𝐸𝐵𝐸))
7 disjpr2 4648 . . . . . . . . 9 (((𝐴𝐷𝐵𝐷) ∧ (𝐴𝐸𝐵𝐸)) → ({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅)
85, 6, 7syl2an 595 . . . . . . . 8 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸)) → ({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅)
983adant3 1126 . . . . . . 7 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅)
10 incom 4182 . . . . . . . 8 ({𝐶} ∩ {𝐷, 𝐸}) = ({𝐷, 𝐸} ∩ {𝐶})
11 necom 3074 . . . . . . . . . . . 12 (𝐶𝐷𝐷𝐶)
1211biimpi 217 . . . . . . . . . . 11 (𝐶𝐷𝐷𝐶)
13123ad2ant3 1129 . . . . . . . . . 10 ((𝐴𝐷𝐵𝐷𝐶𝐷) → 𝐷𝐶)
14 necom 3074 . . . . . . . . . . . 12 (𝐶𝐸𝐸𝐶)
1514biimpi 217 . . . . . . . . . . 11 (𝐶𝐸𝐸𝐶)
16153ad2ant3 1129 . . . . . . . . . 10 ((𝐴𝐸𝐵𝐸𝐶𝐸) → 𝐸𝐶)
17 disjprsn 4649 . . . . . . . . . 10 ((𝐷𝐶𝐸𝐶) → ({𝐷, 𝐸} ∩ {𝐶}) = ∅)
1813, 16, 17syl2an 595 . . . . . . . . 9 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸)) → ({𝐷, 𝐸} ∩ {𝐶}) = ∅)
19183adant3 1126 . . . . . . . 8 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐷, 𝐸} ∩ {𝐶}) = ∅)
2010, 19syl5eq 2873 . . . . . . 7 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐶} ∩ {𝐷, 𝐸}) = ∅)
219, 20jca 512 . . . . . 6 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → (({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐶} ∩ {𝐷, 𝐸}) = ∅))
22 undisj1 4414 . . . . . 6 ((({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐶} ∩ {𝐷, 𝐸}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷, 𝐸}) = ∅)
2321, 22sylib 219 . . . . 5 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷, 𝐸}) = ∅)
244, 23syl5eq 2873 . . . 4 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = ∅)
25 disjtpsn 4650 . . . . 5 ((𝐴𝐹𝐵𝐹𝐶𝐹) → ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅)
26253ad2ant3 1129 . . . 4 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅)
2724, 26jca 512 . . 3 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → (({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅))
28 undisj2 4415 . . 3 ((({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅) ↔ ({𝐴, 𝐵, 𝐶} ∩ ({𝐷, 𝐸} ∪ {𝐹})) = ∅)
2927, 28sylib 219 . 2 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ ({𝐷, 𝐸} ∪ {𝐹})) = ∅)
302, 29syl5eq 2873 1 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wne 3021  cun 3938  cin 3939  c0 4295  {csn 4564  {cpr 4566  {ctp 4568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-sn 4565  df-pr 4567  df-tp 4569
This theorem is referenced by:  cnfldfun  20492
  Copyright terms: Public domain W3C validator