MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtp2 Structured version   Visualization version   GIF version

Theorem disjtp2 4652
Description: Two completely distinct unordered triples are disjoint. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtp2 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ∅)

Proof of Theorem disjtp2
StepHypRef Expression
1 df-tp 4572 . . 3 {𝐷, 𝐸, 𝐹} = ({𝐷, 𝐸} ∪ {𝐹})
21ineq2i 4186 . 2 ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ({𝐴, 𝐵, 𝐶} ∩ ({𝐷, 𝐸} ∪ {𝐹}))
3 df-tp 4572 . . . . . 6 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
43ineq1i 4185 . . . . 5 ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷, 𝐸})
5 3simpa 1144 . . . . . . . . 9 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴𝐷𝐵𝐷))
6 3simpa 1144 . . . . . . . . 9 ((𝐴𝐸𝐵𝐸𝐶𝐸) → (𝐴𝐸𝐵𝐸))
7 disjpr2 4649 . . . . . . . . 9 (((𝐴𝐷𝐵𝐷) ∧ (𝐴𝐸𝐵𝐸)) → ({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅)
85, 6, 7syl2an 597 . . . . . . . 8 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸)) → ({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅)
983adant3 1128 . . . . . . 7 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅)
10 incom 4178 . . . . . . . 8 ({𝐶} ∩ {𝐷, 𝐸}) = ({𝐷, 𝐸} ∩ {𝐶})
11 necom 3069 . . . . . . . . . . . 12 (𝐶𝐷𝐷𝐶)
1211biimpi 218 . . . . . . . . . . 11 (𝐶𝐷𝐷𝐶)
13123ad2ant3 1131 . . . . . . . . . 10 ((𝐴𝐷𝐵𝐷𝐶𝐷) → 𝐷𝐶)
14 necom 3069 . . . . . . . . . . . 12 (𝐶𝐸𝐸𝐶)
1514biimpi 218 . . . . . . . . . . 11 (𝐶𝐸𝐸𝐶)
16153ad2ant3 1131 . . . . . . . . . 10 ((𝐴𝐸𝐵𝐸𝐶𝐸) → 𝐸𝐶)
17 disjprsn 4650 . . . . . . . . . 10 ((𝐷𝐶𝐸𝐶) → ({𝐷, 𝐸} ∩ {𝐶}) = ∅)
1813, 16, 17syl2an 597 . . . . . . . . 9 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸)) → ({𝐷, 𝐸} ∩ {𝐶}) = ∅)
19183adant3 1128 . . . . . . . 8 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐷, 𝐸} ∩ {𝐶}) = ∅)
2010, 19syl5eq 2868 . . . . . . 7 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐶} ∩ {𝐷, 𝐸}) = ∅)
219, 20jca 514 . . . . . 6 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → (({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐶} ∩ {𝐷, 𝐸}) = ∅))
22 undisj1 4411 . . . . . 6 ((({𝐴, 𝐵} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐶} ∩ {𝐷, 𝐸}) = ∅) ↔ (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷, 𝐸}) = ∅)
2321, 22sylib 220 . . . . 5 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → (({𝐴, 𝐵} ∪ {𝐶}) ∩ {𝐷, 𝐸}) = ∅)
244, 23syl5eq 2868 . . . 4 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = ∅)
25 disjtpsn 4651 . . . . 5 ((𝐴𝐹𝐵𝐹𝐶𝐹) → ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅)
26253ad2ant3 1131 . . . 4 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅)
2724, 26jca 514 . . 3 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → (({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅))
28 undisj2 4412 . . 3 ((({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸}) = ∅ ∧ ({𝐴, 𝐵, 𝐶} ∩ {𝐹}) = ∅) ↔ ({𝐴, 𝐵, 𝐶} ∩ ({𝐷, 𝐸} ∪ {𝐹})) = ∅)
2927, 28sylib 220 . 2 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ ({𝐷, 𝐸} ∪ {𝐹})) = ∅)
302, 29syl5eq 2868 1 (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wne 3016  cun 3934  cin 3935  c0 4291  {csn 4567  {cpr 4569  {ctp 4571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-sn 4568  df-pr 4570  df-tp 4572
This theorem is referenced by:  cnfldfun  20557
  Copyright terms: Public domain W3C validator