| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp2 1137 | . . 3
⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐴 ∈ 𝑆) | 
| 2 |  | simp3 1138 | . . 3
⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝐵 ∈ 𝑆) | 
| 3 |  | isros.1 | . . . . . 6
⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} | 
| 4 | 3 | isros 34170 | . . . . 5
⊢ (𝑆 ∈ 𝑄 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ((𝑢 ∪ 𝑣) ∈ 𝑆 ∧ (𝑢 ∖ 𝑣) ∈ 𝑆))) | 
| 5 | 4 | simp3bi 1147 | . . . 4
⊢ (𝑆 ∈ 𝑄 → ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ((𝑢 ∪ 𝑣) ∈ 𝑆 ∧ (𝑢 ∖ 𝑣) ∈ 𝑆)) | 
| 6 | 5 | 3ad2ant1 1133 | . . 3
⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ((𝑢 ∪ 𝑣) ∈ 𝑆 ∧ (𝑢 ∖ 𝑣) ∈ 𝑆)) | 
| 7 |  | uneq1 4160 | . . . . . 6
⊢ (𝑢 = 𝐴 → (𝑢 ∪ 𝑣) = (𝐴 ∪ 𝑣)) | 
| 8 | 7 | eleq1d 2825 | . . . . 5
⊢ (𝑢 = 𝐴 → ((𝑢 ∪ 𝑣) ∈ 𝑆 ↔ (𝐴 ∪ 𝑣) ∈ 𝑆)) | 
| 9 |  | difeq1 4118 | . . . . . 6
⊢ (𝑢 = 𝐴 → (𝑢 ∖ 𝑣) = (𝐴 ∖ 𝑣)) | 
| 10 | 9 | eleq1d 2825 | . . . . 5
⊢ (𝑢 = 𝐴 → ((𝑢 ∖ 𝑣) ∈ 𝑆 ↔ (𝐴 ∖ 𝑣) ∈ 𝑆)) | 
| 11 | 8, 10 | anbi12d 632 | . . . 4
⊢ (𝑢 = 𝐴 → (((𝑢 ∪ 𝑣) ∈ 𝑆 ∧ (𝑢 ∖ 𝑣) ∈ 𝑆) ↔ ((𝐴 ∪ 𝑣) ∈ 𝑆 ∧ (𝐴 ∖ 𝑣) ∈ 𝑆))) | 
| 12 |  | uneq2 4161 | . . . . . 6
⊢ (𝑣 = 𝐵 → (𝐴 ∪ 𝑣) = (𝐴 ∪ 𝐵)) | 
| 13 | 12 | eleq1d 2825 | . . . . 5
⊢ (𝑣 = 𝐵 → ((𝐴 ∪ 𝑣) ∈ 𝑆 ↔ (𝐴 ∪ 𝐵) ∈ 𝑆)) | 
| 14 |  | difeq2 4119 | . . . . . 6
⊢ (𝑣 = 𝐵 → (𝐴 ∖ 𝑣) = (𝐴 ∖ 𝐵)) | 
| 15 | 14 | eleq1d 2825 | . . . . 5
⊢ (𝑣 = 𝐵 → ((𝐴 ∖ 𝑣) ∈ 𝑆 ↔ (𝐴 ∖ 𝐵) ∈ 𝑆)) | 
| 16 | 13, 15 | anbi12d 632 | . . . 4
⊢ (𝑣 = 𝐵 → (((𝐴 ∪ 𝑣) ∈ 𝑆 ∧ (𝐴 ∖ 𝑣) ∈ 𝑆) ↔ ((𝐴 ∪ 𝐵) ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆))) | 
| 17 | 11, 16 | rspc2va 3633 | . . 3
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ((𝑢 ∪ 𝑣) ∈ 𝑆 ∧ (𝑢 ∖ 𝑣) ∈ 𝑆)) → ((𝐴 ∪ 𝐵) ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆)) | 
| 18 | 1, 2, 6, 17 | syl21anc 837 | . 2
⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴 ∪ 𝐵) ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆)) | 
| 19 | 18 | simpld 494 | 1
⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∪ 𝐵) ∈ 𝑆) |