| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4108 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uncom 4105 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
| 3 | uncom 4105 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 |
| This theorem is referenced by: uneq12 4110 uneq2i 4112 uneq2d 4115 uneqin 4236 disjssun 4415 unexbOLD 7681 undifixp 8858 unfi 9080 unxpdom 9143 ackbij1lem16 10125 fin23lem28 10231 ttukeylem6 10405 lcmfun 16556 ipodrsima 18447 mplsubglem 21936 mretopd 23007 iscldtop 23010 dfconn2 23334 nconnsubb 23338 comppfsc 23447 noextendseq 27606 onscutlt 28201 spanun 31525 constrextdg2lem 33761 locfinref 33854 isros 34181 unelros 34184 difelros 34185 rossros 34193 inelcarsg 34324 fineqvac 35139 rankung 36210 bj-funun 37296 paddval 39907 dochsatshp 41560 nacsfix 42815 eldioph4b 42914 eldioph4i 42915 fiuneneq 43295 isotone1 44151 fiiuncl 45172 |
| Copyright terms: Public domain | W3C validator |