| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4161 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uncom 4158 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
| 3 | uncom 4158 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2802 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-un 3956 |
| This theorem is referenced by: uneq12 4163 uneq2i 4165 uneq2d 4168 uneqin 4289 disjssun 4468 unexbOLD 7768 undifixp 8974 unfi 9211 unxpdom 9289 ackbij1lem16 10274 fin23lem28 10380 ttukeylem6 10554 lcmfun 16682 ipodrsima 18586 mplsubglem 22019 mretopd 23100 iscldtop 23103 dfconn2 23427 nconnsubb 23431 comppfsc 23540 noextendseq 27712 spanun 31564 constrextdg2lem 33789 locfinref 33840 isros 34169 unelros 34172 difelros 34173 rossros 34181 inelcarsg 34313 fineqvac 35111 rankung 36167 bj-funun 37253 paddval 39800 dochsatshp 41453 nacsfix 42723 eldioph4b 42822 eldioph4i 42823 fiuneneq 43204 isotone1 44061 fiiuncl 45070 |
| Copyright terms: Public domain | W3C validator |