![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4170 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uncom 4167 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
3 | uncom 4167 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∪ cun 3960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-un 3967 |
This theorem is referenced by: uneq12 4172 uneq2i 4174 uneq2d 4177 uneqin 4294 disjssun 4473 unexbOLD 7766 undifixp 8972 unfi 9209 unxpdom 9286 ackbij1lem16 10271 fin23lem28 10377 ttukeylem6 10551 lcmfun 16678 ipodrsima 18598 mplsubglem 22036 mretopd 23115 iscldtop 23118 dfconn2 23442 nconnsubb 23446 comppfsc 23555 noextendseq 27726 spanun 31573 locfinref 33801 isros 34148 unelros 34151 difelros 34152 rossros 34160 inelcarsg 34292 fineqvac 35089 rankung 36147 bj-funun 37234 paddval 39780 dochsatshp 41433 nacsfix 42699 eldioph4b 42798 eldioph4i 42799 fiuneneq 43180 isotone1 44037 fiiuncl 45004 |
Copyright terms: Public domain | W3C validator |