| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4112 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uncom 4109 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
| 3 | uncom 4109 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 |
| This theorem is referenced by: uneq12 4114 uneq2i 4116 uneq2d 4119 uneqin 4240 disjssun 4419 unexbOLD 7684 undifixp 8861 unfi 9085 unxpdom 9148 ackbij1lem16 10128 fin23lem28 10234 ttukeylem6 10408 lcmfun 16556 ipodrsima 18447 mplsubglem 21906 mretopd 22977 iscldtop 22980 dfconn2 23304 nconnsubb 23308 comppfsc 23417 noextendseq 27577 onscutlt 28170 spanun 31489 constrextdg2lem 33715 locfinref 33808 isros 34135 unelros 34138 difelros 34139 rossros 34147 inelcarsg 34279 fineqvac 35072 rankung 36144 bj-funun 37230 paddval 39781 dochsatshp 41434 nacsfix 42689 eldioph4b 42788 eldioph4i 42789 fiuneneq 43169 isotone1 44025 fiiuncl 45047 |
| Copyright terms: Public domain | W3C validator |