Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4086 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uncom 4083 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
3 | uncom 4083 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 |
This theorem is referenced by: uneq12 4088 uneq2i 4090 uneq2d 4093 uneqin 4209 disjssun 4398 uniprgOLD 4856 unexb 7576 undifixp 8680 unfi 8917 unxpdom 8959 ackbij1lem16 9922 fin23lem28 10027 ttukeylem6 10201 lcmfun 16278 ipodrsima 18174 mplsubglem 21115 mretopd 22151 iscldtop 22154 dfconn2 22478 nconnsubb 22482 comppfsc 22591 spanun 29808 locfinref 31693 isros 32036 unelros 32039 difelros 32040 rossros 32048 inelcarsg 32178 fineqvac 32966 noextendseq 33797 rankung 34395 bj-funun 35350 paddval 37739 dochsatshp 39392 nacsfix 40450 eldioph4b 40549 eldioph4i 40550 fiuneneq 40938 isotone1 41547 fiiuncl 42502 |
Copyright terms: Public domain | W3C validator |