| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4127 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uncom 4124 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
| 3 | uncom 4124 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 |
| This theorem is referenced by: uneq12 4129 uneq2i 4131 uneq2d 4134 uneqin 4255 disjssun 4434 unexbOLD 7727 undifixp 8910 unfi 9141 unxpdom 9207 ackbij1lem16 10194 fin23lem28 10300 ttukeylem6 10474 lcmfun 16622 ipodrsima 18507 mplsubglem 21915 mretopd 22986 iscldtop 22989 dfconn2 23313 nconnsubb 23317 comppfsc 23426 noextendseq 27586 onscutlt 28172 spanun 31481 constrextdg2lem 33745 locfinref 33838 isros 34165 unelros 34168 difelros 34169 rossros 34177 inelcarsg 34309 fineqvac 35094 rankung 36161 bj-funun 37247 paddval 39799 dochsatshp 41452 nacsfix 42707 eldioph4b 42806 eldioph4i 42807 fiuneneq 43188 isotone1 44044 fiiuncl 45066 |
| Copyright terms: Public domain | W3C validator |