Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4095 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uncom 4092 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
3 | uncom 4092 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∪ cun 3890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-un 3897 |
This theorem is referenced by: uneq12 4097 uneq2i 4099 uneq2d 4102 uneqin 4218 disjssun 4407 uniprgOLD 4865 unexb 7590 undifixp 8697 unfi 8929 unxpdom 9000 ackbij1lem16 9984 fin23lem28 10089 ttukeylem6 10263 lcmfun 16340 ipodrsima 18249 mplsubglem 21195 mretopd 22233 iscldtop 22236 dfconn2 22560 nconnsubb 22564 comppfsc 22673 spanun 29895 locfinref 31779 isros 32124 unelros 32127 difelros 32128 rossros 32136 inelcarsg 32266 fineqvac 33054 noextendseq 33858 rankung 34456 bj-funun 35411 paddval 37800 dochsatshp 39453 nacsfix 40523 eldioph4b 40622 eldioph4i 40623 fiuneneq 41011 isotone1 41620 fiiuncl 42575 |
Copyright terms: Public domain | W3C validator |