| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4134 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uncom 4131 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
| 3 | uncom 4131 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2794 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∪ cun 3922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-un 3929 |
| This theorem is referenced by: uneq12 4136 uneq2i 4138 uneq2d 4141 uneqin 4262 disjssun 4441 unexbOLD 7736 undifixp 8942 unfi 9179 unxpdom 9255 ackbij1lem16 10240 fin23lem28 10346 ttukeylem6 10520 lcmfun 16649 ipodrsima 18536 mplsubglem 21944 mretopd 23015 iscldtop 23018 dfconn2 23342 nconnsubb 23346 comppfsc 23455 noextendseq 27615 spanun 31458 constrextdg2lem 33698 locfinref 33780 isros 34107 unelros 34110 difelros 34111 rossros 34119 inelcarsg 34251 fineqvac 35049 rankung 36105 bj-funun 37191 paddval 39738 dochsatshp 41391 nacsfix 42660 eldioph4b 42759 eldioph4i 42760 fiuneneq 43141 isotone1 43997 fiiuncl 45016 |
| Copyright terms: Public domain | W3C validator |