| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4124 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uncom 4121 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
| 3 | uncom 4121 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 |
| This theorem is referenced by: uneq12 4126 uneq2i 4128 uneq2d 4131 uneqin 4252 disjssun 4431 unexbOLD 7724 undifixp 8907 unfi 9135 unxpdom 9200 ackbij1lem16 10187 fin23lem28 10293 ttukeylem6 10467 lcmfun 16615 ipodrsima 18500 mplsubglem 21908 mretopd 22979 iscldtop 22982 dfconn2 23306 nconnsubb 23310 comppfsc 23419 noextendseq 27579 onscutlt 28165 spanun 31474 constrextdg2lem 33738 locfinref 33831 isros 34158 unelros 34161 difelros 34162 rossros 34170 inelcarsg 34302 fineqvac 35087 rankung 36154 bj-funun 37240 paddval 39792 dochsatshp 41445 nacsfix 42700 eldioph4b 42799 eldioph4i 42800 fiuneneq 43181 isotone1 44037 fiiuncl 45059 |
| Copyright terms: Public domain | W3C validator |