| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4136 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uncom 4133 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
| 3 | uncom 4133 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 |
| This theorem is referenced by: uneq12 4138 uneq2i 4140 uneq2d 4143 uneqin 4264 disjssun 4443 unexbOLD 7740 undifixp 8946 unfi 9183 unxpdom 9259 ackbij1lem16 10246 fin23lem28 10352 ttukeylem6 10526 lcmfun 16662 ipodrsima 18549 mplsubglem 21957 mretopd 23028 iscldtop 23031 dfconn2 23355 nconnsubb 23359 comppfsc 23468 noextendseq 27629 spanun 31472 constrextdg2lem 33728 locfinref 33818 isros 34145 unelros 34148 difelros 34149 rossros 34157 inelcarsg 34289 fineqvac 35074 rankung 36130 bj-funun 37216 paddval 39763 dochsatshp 41416 nacsfix 42682 eldioph4b 42781 eldioph4i 42782 fiuneneq 43163 isotone1 44019 fiiuncl 45037 |
| Copyright terms: Public domain | W3C validator |