![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4184 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uncom 4181 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
3 | uncom 4181 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 |
This theorem is referenced by: uneq12 4186 uneq2i 4188 uneq2d 4191 uneqin 4308 disjssun 4491 unexbOLD 7783 undifixp 8992 unfi 9238 unxpdom 9316 ackbij1lem16 10303 fin23lem28 10409 ttukeylem6 10583 lcmfun 16692 ipodrsima 18611 mplsubglem 22042 mretopd 23121 iscldtop 23124 dfconn2 23448 nconnsubb 23452 comppfsc 23561 noextendseq 27730 spanun 31577 locfinref 33787 isros 34132 unelros 34135 difelros 34136 rossros 34144 inelcarsg 34276 fineqvac 35073 rankung 36130 bj-funun 37218 paddval 39755 dochsatshp 41408 nacsfix 42668 eldioph4b 42767 eldioph4i 42768 fiuneneq 43153 isotone1 44010 fiiuncl 44967 |
Copyright terms: Public domain | W3C validator |