| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4120 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uncom 4117 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
| 3 | uncom 4117 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 |
| This theorem is referenced by: uneq12 4122 uneq2i 4124 uneq2d 4127 uneqin 4248 disjssun 4427 unexbOLD 7704 undifixp 8884 unfi 9112 unxpdom 9176 ackbij1lem16 10163 fin23lem28 10269 ttukeylem6 10443 lcmfun 16591 ipodrsima 18482 mplsubglem 21941 mretopd 23012 iscldtop 23015 dfconn2 23339 nconnsubb 23343 comppfsc 23452 noextendseq 27612 onscutlt 28205 spanun 31524 constrextdg2lem 33731 locfinref 33824 isros 34151 unelros 34154 difelros 34155 rossros 34163 inelcarsg 34295 fineqvac 35080 rankung 36147 bj-funun 37233 paddval 39785 dochsatshp 41438 nacsfix 42693 eldioph4b 42792 eldioph4i 42793 fiuneneq 43174 isotone1 44030 fiiuncl 45052 |
| Copyright terms: Public domain | W3C validator |