Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
uneq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4090 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uncom 4087 | . 2 ⊢ (𝐶 ∪ 𝐴) = (𝐴 ∪ 𝐶) | |
3 | uncom 4087 | . 2 ⊢ (𝐶 ∪ 𝐵) = (𝐵 ∪ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 |
This theorem is referenced by: uneq12 4092 uneq2i 4094 uneq2d 4097 uneqin 4212 disjssun 4401 uniprgOLD 4859 unexb 7598 undifixp 8722 unfi 8955 unxpdom 9030 ackbij1lem16 9991 fin23lem28 10096 ttukeylem6 10270 lcmfun 16350 ipodrsima 18259 mplsubglem 21205 mretopd 22243 iscldtop 22246 dfconn2 22570 nconnsubb 22574 comppfsc 22683 spanun 29907 locfinref 31791 isros 32136 unelros 32139 difelros 32140 rossros 32148 inelcarsg 32278 fineqvac 33066 noextendseq 33870 rankung 34468 bj-funun 35423 paddval 37812 dochsatshp 39465 nacsfix 40534 eldioph4b 40633 eldioph4i 40634 fiuneneq 41022 isotone1 41658 fiiuncl 42613 |
Copyright terms: Public domain | W3C validator |