MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqin Structured version   Visualization version   GIF version

Theorem uneqin 4209
Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uneqin ((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)

Proof of Theorem uneqin
StepHypRef Expression
1 eqimss 3973 . . . 4 ((𝐴𝐵) = (𝐴𝐵) → (𝐴𝐵) ⊆ (𝐴𝐵))
2 unss 4114 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) ↔ (𝐴𝐵) ⊆ (𝐴𝐵))
3 ssin 4161 . . . . . . 7 ((𝐴𝐴𝐴𝐵) ↔ 𝐴 ⊆ (𝐴𝐵))
4 sstr 3925 . . . . . . 7 ((𝐴𝐴𝐴𝐵) → 𝐴𝐵)
53, 4sylbir 234 . . . . . 6 (𝐴 ⊆ (𝐴𝐵) → 𝐴𝐵)
6 ssin 4161 . . . . . . 7 ((𝐵𝐴𝐵𝐵) ↔ 𝐵 ⊆ (𝐴𝐵))
7 simpl 482 . . . . . . 7 ((𝐵𝐴𝐵𝐵) → 𝐵𝐴)
86, 7sylbir 234 . . . . . 6 (𝐵 ⊆ (𝐴𝐵) → 𝐵𝐴)
95, 8anim12i 612 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝐴𝐵𝐵𝐴))
102, 9sylbir 234 . . . 4 ((𝐴𝐵) ⊆ (𝐴𝐵) → (𝐴𝐵𝐵𝐴))
111, 10syl 17 . . 3 ((𝐴𝐵) = (𝐴𝐵) → (𝐴𝐵𝐵𝐴))
12 eqss 3932 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
1311, 12sylibr 233 . 2 ((𝐴𝐵) = (𝐴𝐵) → 𝐴 = 𝐵)
14 unidm 4082 . . . 4 (𝐴𝐴) = 𝐴
15 inidm 4149 . . . 4 (𝐴𝐴) = 𝐴
1614, 15eqtr4i 2769 . . 3 (𝐴𝐴) = (𝐴𝐴)
17 uneq2 4087 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
18 ineq2 4137 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
1916, 17, 183eqtr3a 2803 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐴𝐵))
2013, 19impbii 208 1 ((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  cun 3881  cin 3882  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-un 3888  df-in 3890  df-ss 3900
This theorem is referenced by:  uniintsn  4915
  Copyright terms: Public domain W3C validator