MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqin Structured version   Visualization version   GIF version

Theorem uneqin 4289
Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uneqin ((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)

Proof of Theorem uneqin
StepHypRef Expression
1 eqimss 4042 . . . 4 ((𝐴𝐵) = (𝐴𝐵) → (𝐴𝐵) ⊆ (𝐴𝐵))
2 unss 4190 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) ↔ (𝐴𝐵) ⊆ (𝐴𝐵))
3 ssin 4239 . . . . . . 7 ((𝐴𝐴𝐴𝐵) ↔ 𝐴 ⊆ (𝐴𝐵))
4 sstr 3992 . . . . . . 7 ((𝐴𝐴𝐴𝐵) → 𝐴𝐵)
53, 4sylbir 235 . . . . . 6 (𝐴 ⊆ (𝐴𝐵) → 𝐴𝐵)
6 ssin 4239 . . . . . . 7 ((𝐵𝐴𝐵𝐵) ↔ 𝐵 ⊆ (𝐴𝐵))
7 simpl 482 . . . . . . 7 ((𝐵𝐴𝐵𝐵) → 𝐵𝐴)
86, 7sylbir 235 . . . . . 6 (𝐵 ⊆ (𝐴𝐵) → 𝐵𝐴)
95, 8anim12i 613 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝐴𝐵𝐵𝐴))
102, 9sylbir 235 . . . 4 ((𝐴𝐵) ⊆ (𝐴𝐵) → (𝐴𝐵𝐵𝐴))
111, 10syl 17 . . 3 ((𝐴𝐵) = (𝐴𝐵) → (𝐴𝐵𝐵𝐴))
12 eqss 3999 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
1311, 12sylibr 234 . 2 ((𝐴𝐵) = (𝐴𝐵) → 𝐴 = 𝐵)
14 unidm 4157 . . . 4 (𝐴𝐴) = 𝐴
15 inidm 4227 . . . 4 (𝐴𝐴) = 𝐴
1614, 15eqtr4i 2768 . . 3 (𝐴𝐴) = (𝐴𝐴)
17 uneq2 4162 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
18 ineq2 4214 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
1916, 17, 183eqtr3a 2801 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐴𝐵))
2013, 19impbii 209 1 ((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  cun 3949  cin 3950  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-un 3956  df-in 3958  df-ss 3968
This theorem is referenced by:  uniintsn  4985
  Copyright terms: Public domain W3C validator