Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqin Structured version   Visualization version   GIF version

Theorem uneqin 4240
 Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uneqin ((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)

Proof of Theorem uneqin
StepHypRef Expression
1 eqimss 4009 . . . 4 ((𝐴𝐵) = (𝐴𝐵) → (𝐴𝐵) ⊆ (𝐴𝐵))
2 unss 4146 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) ↔ (𝐴𝐵) ⊆ (𝐴𝐵))
3 ssin 4192 . . . . . . 7 ((𝐴𝐴𝐴𝐵) ↔ 𝐴 ⊆ (𝐴𝐵))
4 sstr 3961 . . . . . . 7 ((𝐴𝐴𝐴𝐵) → 𝐴𝐵)
53, 4sylbir 238 . . . . . 6 (𝐴 ⊆ (𝐴𝐵) → 𝐴𝐵)
6 ssin 4192 . . . . . . 7 ((𝐵𝐴𝐵𝐵) ↔ 𝐵 ⊆ (𝐴𝐵))
7 simpl 486 . . . . . . 7 ((𝐵𝐴𝐵𝐵) → 𝐵𝐴)
86, 7sylbir 238 . . . . . 6 (𝐵 ⊆ (𝐴𝐵) → 𝐵𝐴)
95, 8anim12i 615 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝐴𝐵𝐵𝐴))
102, 9sylbir 238 . . . 4 ((𝐴𝐵) ⊆ (𝐴𝐵) → (𝐴𝐵𝐵𝐴))
111, 10syl 17 . . 3 ((𝐴𝐵) = (𝐴𝐵) → (𝐴𝐵𝐵𝐴))
12 eqss 3968 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
1311, 12sylibr 237 . 2 ((𝐴𝐵) = (𝐴𝐵) → 𝐴 = 𝐵)
14 unidm 4114 . . . 4 (𝐴𝐴) = 𝐴
15 inidm 4180 . . . 4 (𝐴𝐴) = 𝐴
1614, 15eqtr4i 2850 . . 3 (𝐴𝐴) = (𝐴𝐴)
17 uneq2 4119 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
18 ineq2 4168 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
1916, 17, 183eqtr3a 2883 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐴𝐵))
2013, 19impbii 212 1 ((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∪ cun 3917   ∩ cin 3918   ⊆ wss 3919 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-rab 3142  df-v 3482  df-un 3924  df-in 3926  df-ss 3936 This theorem is referenced by:  uniintsn  4899
 Copyright terms: Public domain W3C validator