| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniun | Structured version Visualization version GIF version | ||
| Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniun | ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1882 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
| 2 | elun 4116 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
| 3 | 2 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵))) |
| 4 | andi 1009 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | exbii 1848 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 7 | eluni 4874 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 8 | eluni 4874 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 9 | 7, 8 | orbi12i 914 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 10 | 1, 6, 9 | 3bitr4i 303 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) |
| 11 | eluni 4874 | . . 3 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) | |
| 12 | elun 4116 | . . 3 ⊢ (𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵)) |
| 14 | 13 | eqriv 2726 | 1 ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∪ cun 3912 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-uni 4872 |
| This theorem is referenced by: unidif0 5315 unisucs 6411 fvssunirnOLD 6892 fvun 6951 onuninsuci 7816 tc2 9695 fin1a2lem10 10362 fin1a2lem12 10364 incexclem 15802 dprd2da 19974 dmdprdsplit2lem 19977 ordtuni 23077 cmpcld 23289 uncmp 23290 refun0 23402 lfinun 23412 1stckgenlem 23440 filconn 23770 ufildr 23818 alexsubALTlem3 23936 cldsubg 23998 icccmplem2 24712 uniioombllem3 25486 madeoldsuc 27796 zs12bday 28343 sxbrsigalem0 34262 fiunelcarsg 34307 carsgclctunlem1 34308 carsggect 34309 cvmscld 35260 refssfne 36346 topjoin 36353 pibt2 37405 mbfresfi 37660 onsucunitp 43362 oaun3 43371 fourierdlem80 46184 isomenndlem 46528 |
| Copyright terms: Public domain | W3C validator |