MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniun Structured version   Visualization version   GIF version

Theorem uniun 4770
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
uniun (𝐴𝐵) = ( 𝐴 𝐵)

Proof of Theorem uniun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1868 . . . 4 (∃𝑦((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∨ ∃𝑦(𝑥𝑦𝑦𝐵)))
2 elun 4052 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
32anbi2i 622 . . . . . 6 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)))
4 andi 1002 . . . . . 6 ((𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
53, 4bitri 276 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
65exbii 1833 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ∃𝑦((𝑥𝑦𝑦𝐴) ∨ (𝑥𝑦𝑦𝐵)))
7 eluni 4754 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
8 eluni 4754 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
97, 8orbi12i 909 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∨ ∃𝑦(𝑥𝑦𝑦𝐵)))
101, 6, 93bitr4i 304 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥 𝐴𝑥 𝐵))
11 eluni 4754 . . 3 (𝑥 (𝐴𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)))
12 elun 4052 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
1310, 11, 123bitr4i 304 . 2 (𝑥 (𝐴𝐵) ↔ 𝑥 ∈ ( 𝐴 𝐵))
1413eqriv 2794 1 (𝐴𝐵) = ( 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 396  wo 842   = wceq 1525  wex 1765  wcel 2083  cun 3863   cuni 4751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-ext 2771
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-v 3442  df-un 3870  df-uni 4752
This theorem is referenced by:  unidif0  5158  unisuc  6149  fvssunirn  6574  fvun  6627  onuninsuci  7418  tc2  9037  fin1a2lem10  9684  fin1a2lem12  9686  incexclem  15028  dprd2da  18885  dmdprdsplit2lem  18888  ordtuni  21486  cmpcld  21698  uncmp  21699  refun0  21811  lfinun  21821  1stckgenlem  21849  filconn  22179  ufildr  22227  alexsubALTlem3  22345  cldsubg  22406  icccmplem2  23118  uniioombllem3  23873  sxbrsigalem0  31142  fiunelcarsg  31187  carsgclctunlem1  31188  carsggect  31189  cvmscld  32130  noetalem4  32831  refssfne  33317  topjoin  33324  pibt2  34250  mbfresfi  34490  fourierdlem80  42035  isomenndlem  42376
  Copyright terms: Public domain W3C validator