![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniun | Structured version Visualization version GIF version |
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
uniun | ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1880 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
2 | elun 4163 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
3 | 2 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵))) |
4 | andi 1009 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
5 | 3, 4 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | exbii 1845 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
7 | eluni 4915 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
8 | eluni 4915 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
9 | 7, 8 | orbi12i 914 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
10 | 1, 6, 9 | 3bitr4i 303 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) |
11 | eluni 4915 | . . 3 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) | |
12 | elun 4163 | . . 3 ⊢ (𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) | |
13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵)) |
14 | 13 | eqriv 2732 | 1 ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∪ cun 3961 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-uni 4913 |
This theorem is referenced by: unidif0 5366 unisucs 6463 fvssunirnOLD 6941 fvun 6999 onuninsuci 7861 tc2 9780 fin1a2lem10 10447 fin1a2lem12 10449 incexclem 15869 dprd2da 20077 dmdprdsplit2lem 20080 ordtuni 23214 cmpcld 23426 uncmp 23427 refun0 23539 lfinun 23549 1stckgenlem 23577 filconn 23907 ufildr 23955 alexsubALTlem3 24073 cldsubg 24135 icccmplem2 24859 uniioombllem3 25634 madeoldsuc 27938 zs12bday 28439 sxbrsigalem0 34253 fiunelcarsg 34298 carsgclctunlem1 34299 carsggect 34300 cvmscld 35258 refssfne 36341 topjoin 36348 pibt2 37400 mbfresfi 37653 onsucunitp 43363 oaun3 43372 fourierdlem80 46142 isomenndlem 46486 |
Copyright terms: Public domain | W3C validator |