| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniun | Structured version Visualization version GIF version | ||
| Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniun | ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1883 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
| 2 | elun 4102 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
| 3 | 2 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵))) |
| 4 | andi 1009 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | exbii 1849 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 7 | eluni 4861 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 8 | eluni 4861 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 9 | 7, 8 | orbi12i 914 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 10 | 1, 6, 9 | 3bitr4i 303 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) |
| 11 | eluni 4861 | . . 3 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) | |
| 12 | elun 4102 | . . 3 ⊢ (𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵)) |
| 14 | 13 | eqriv 2730 | 1 ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∪ cun 3896 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-uni 4859 |
| This theorem is referenced by: unidif0 5300 unisucs 6390 fvun 6918 onuninsuci 7776 tc2 9637 fin1a2lem10 10307 fin1a2lem12 10309 incexclem 15745 dprd2da 19958 dmdprdsplit2lem 19961 ordtuni 23106 cmpcld 23318 uncmp 23319 refun0 23431 lfinun 23441 1stckgenlem 23469 filconn 23799 ufildr 23847 alexsubALTlem3 23965 cldsubg 24027 icccmplem2 24740 uniioombllem3 25514 madeoldsuc 27831 zs12bday 28395 sxbrsigalem0 34305 fiunelcarsg 34350 carsgclctunlem1 34351 carsggect 34352 tz9.1regs 35151 cvmscld 35338 refssfne 36423 topjoin 36430 pibt2 37482 mbfresfi 37726 onsucunitp 43490 oaun3 43499 fourierdlem80 46308 isomenndlem 46652 |
| Copyright terms: Public domain | W3C validator |