| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniun | Structured version Visualization version GIF version | ||
| Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| uniun | ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.43 1882 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
| 2 | elun 4106 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
| 3 | 2 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵))) |
| 4 | andi 1009 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | exbii 1848 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 7 | eluni 4864 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 8 | eluni 4864 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 9 | 7, 8 | orbi12i 914 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 10 | 1, 6, 9 | 3bitr4i 303 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) |
| 11 | eluni 4864 | . . 3 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) | |
| 12 | elun 4106 | . . 3 ⊢ (𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵)) |
| 14 | 13 | eqriv 2726 | 1 ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∪ cun 3903 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-uni 4862 |
| This theorem is referenced by: unidif0 5302 unisucs 6390 fvssunirnOLD 6858 fvun 6917 onuninsuci 7780 tc2 9657 fin1a2lem10 10322 fin1a2lem12 10324 incexclem 15761 dprd2da 19941 dmdprdsplit2lem 19944 ordtuni 23093 cmpcld 23305 uncmp 23306 refun0 23418 lfinun 23428 1stckgenlem 23456 filconn 23786 ufildr 23834 alexsubALTlem3 23952 cldsubg 24014 icccmplem2 24728 uniioombllem3 25502 madeoldsuc 27817 zs12bday 28379 sxbrsigalem0 34238 fiunelcarsg 34283 carsgclctunlem1 34284 carsggect 34285 tz9.1regs 35066 cvmscld 35245 refssfne 36331 topjoin 36338 pibt2 37390 mbfresfi 37645 onsucunitp 43346 oaun3 43355 fourierdlem80 46168 isomenndlem 46512 |
| Copyright terms: Public domain | W3C validator |