Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniun | Structured version Visualization version GIF version |
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
uniun | ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1886 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
2 | elun 4079 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
3 | 2 | anbi2i 622 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵))) |
4 | andi 1004 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
5 | 3, 4 | bitri 274 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | exbii 1851 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
7 | eluni 4839 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
8 | eluni 4839 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
9 | 7, 8 | orbi12i 911 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∨ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
10 | 1, 6, 9 | 3bitr4i 302 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) |
11 | eluni 4839 | . . 3 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) | |
12 | elun 4079 | . . 3 ⊢ (𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵)) | |
13 | 10, 11, 12 | 3bitr4i 302 | . 2 ⊢ (𝑥 ∈ ∪ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ (∪ 𝐴 ∪ ∪ 𝐵)) |
14 | 13 | eqriv 2735 | 1 ⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 843 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∪ cun 3881 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-uni 4837 |
This theorem is referenced by: unidif0 5277 unisuc 6327 fvssunirn 6785 fvun 6840 onuninsuci 7662 tc2 9431 fin1a2lem10 10096 fin1a2lem12 10098 incexclem 15476 dprd2da 19560 dmdprdsplit2lem 19563 ordtuni 22249 cmpcld 22461 uncmp 22462 refun0 22574 lfinun 22584 1stckgenlem 22612 filconn 22942 ufildr 22990 alexsubALTlem3 23108 cldsubg 23170 icccmplem2 23892 uniioombllem3 24654 sxbrsigalem0 32138 fiunelcarsg 32183 carsgclctunlem1 32184 carsggect 32185 cvmscld 33135 madeoldsuc 33994 refssfne 34474 topjoin 34481 pibt2 35515 mbfresfi 35750 fourierdlem80 43617 isomenndlem 43958 |
Copyright terms: Public domain | W3C validator |