MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl2gaf Structured version   Visualization version   GIF version

Theorem vtocl2gaf 3527
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
vtocl2gaf.a 𝑥𝐴
vtocl2gaf.b 𝑦𝐴
vtocl2gaf.c 𝑦𝐵
vtocl2gaf.1 𝑥𝜓
vtocl2gaf.2 𝑦𝜒
vtocl2gaf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2gaf.4 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2gaf.5 ((𝑥𝐶𝑦𝐷) → 𝜑)
Assertion
Ref Expression
vtocl2gaf ((𝐴𝐶𝐵𝐷) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem vtocl2gaf
StepHypRef Expression
1 vtocl2gaf.a . . 3 𝑥𝐴
2 vtocl2gaf.b . . 3 𝑦𝐴
3 vtocl2gaf.c . . 3 𝑦𝐵
41nfel1 2974 . . . . 5 𝑥 𝐴𝐶
5 nfv 1915 . . . . 5 𝑥 𝑦𝐷
64, 5nfan 1900 . . . 4 𝑥(𝐴𝐶𝑦𝐷)
7 vtocl2gaf.1 . . . 4 𝑥𝜓
86, 7nfim 1897 . . 3 𝑥((𝐴𝐶𝑦𝐷) → 𝜓)
92nfel1 2974 . . . . 5 𝑦 𝐴𝐶
103nfel1 2974 . . . . 5 𝑦 𝐵𝐷
119, 10nfan 1900 . . . 4 𝑦(𝐴𝐶𝐵𝐷)
12 vtocl2gaf.2 . . . 4 𝑦𝜒
1311, 12nfim 1897 . . 3 𝑦((𝐴𝐶𝐵𝐷) → 𝜒)
14 eleq1 2880 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
1514anbi1d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐶𝑦𝐷) ↔ (𝐴𝐶𝑦𝐷)))
16 vtocl2gaf.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
1715, 16imbi12d 348 . . 3 (𝑥 = 𝐴 → (((𝑥𝐶𝑦𝐷) → 𝜑) ↔ ((𝐴𝐶𝑦𝐷) → 𝜓)))
18 eleq1 2880 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐷𝐵𝐷))
1918anbi2d 631 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐶𝑦𝐷) ↔ (𝐴𝐶𝐵𝐷)))
20 vtocl2gaf.4 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
2119, 20imbi12d 348 . . 3 (𝑦 = 𝐵 → (((𝐴𝐶𝑦𝐷) → 𝜓) ↔ ((𝐴𝐶𝐵𝐷) → 𝜒)))
22 vtocl2gaf.5 . . 3 ((𝑥𝐶𝑦𝐷) → 𝜑)
231, 2, 3, 8, 13, 17, 21, 22vtocl2gf 3521 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐴𝐶𝐵𝐷) → 𝜒))
2423pm2.43i 52 1 ((𝐴𝐶𝐵𝐷) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  wcel 2112  wnfc 2939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-v 3446
This theorem is referenced by:  ovmpos  7281  ov2gf  7282  ov3  7295  pwfseqlem2  10074  cnmptcom  22286
  Copyright terms: Public domain W3C validator