MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptcom Structured version   Visualization version   GIF version

Theorem cnmptcom 22289
Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmptcom.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptcom.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptcom.6 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Assertion
Ref Expression
cnmptcom (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐿   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmptcom
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptcom.3 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmptcom.4 . . . . . . . . 9 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txtopon 22202 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 586 . . . . . . . 8 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmptcom.6 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
6 cntop2 21852 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
75, 6syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
8 toptopon2 21529 . . . . . . . . 9 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
97, 8sylib 220 . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
10 cnf2 21860 . . . . . . . 8 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
114, 9, 5, 10syl3anc 1367 . . . . . . 7 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
12 eqid 2824 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1312fmpo 7769 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 𝐿 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
14 ralcom 3357 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 𝐿 ↔ ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
1513, 14bitr3i 279 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿 ↔ ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
1611, 15sylib 220 . . . . . 6 (𝜑 → ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
17 eqid 2824 . . . . . . 7 (𝑦𝑌, 𝑥𝑋𝐴) = (𝑦𝑌, 𝑥𝑋𝐴)
1817fmpo 7769 . . . . . 6 (∀𝑦𝑌𝑥𝑋 𝐴 𝐿 ↔ (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
1916, 18sylib 220 . . . . 5 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
2019ffnd 6518 . . . 4 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) Fn (𝑌 × 𝑋))
21 fnov 7285 . . . 4 ((𝑦𝑌, 𝑥𝑋𝐴) Fn (𝑌 × 𝑋) ↔ (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
2220, 21sylib 220 . . 3 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
23 nfcv 2980 . . . . . . 7 𝑦𝑧
24 nfcv 2980 . . . . . . 7 𝑥𝑧
25 nfcv 2980 . . . . . . 7 𝑥𝑤
26 nfv 1914 . . . . . . . 8 𝑦𝜑
27 nfcv 2980 . . . . . . . . . 10 𝑦𝑥
28 nfmpo2 7238 . . . . . . . . . 10 𝑦(𝑥𝑋, 𝑦𝑌𝐴)
2927, 28, 23nfov 7189 . . . . . . . . 9 𝑦(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧)
30 nfmpo1 7237 . . . . . . . . . 10 𝑦(𝑦𝑌, 𝑥𝑋𝐴)
3123, 30, 27nfov 7189 . . . . . . . . 9 𝑦(𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)
3229, 31nfeq 2994 . . . . . . . 8 𝑦(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)
3326, 32nfim 1896 . . . . . . 7 𝑦(𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
34 nfv 1914 . . . . . . . 8 𝑥𝜑
35 nfmpo1 7237 . . . . . . . . . 10 𝑥(𝑥𝑋, 𝑦𝑌𝐴)
3625, 35, 24nfov 7189 . . . . . . . . 9 𝑥(𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)
37 nfmpo2 7238 . . . . . . . . . 10 𝑥(𝑦𝑌, 𝑥𝑋𝐴)
3824, 37, 25nfov 7189 . . . . . . . . 9 𝑥(𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
3936, 38nfeq 2994 . . . . . . . 8 𝑥(𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
4034, 39nfim 1896 . . . . . . 7 𝑥(𝜑 → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
41 oveq2 7167 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧))
42 oveq1 7166 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
4341, 42eqeq12d 2840 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) ↔ (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
4443imbi2d 343 . . . . . . 7 (𝑦 = 𝑧 → ((𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)) ↔ (𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥))))
45 oveq1 7166 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧))
46 oveq2 7167 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
4745, 46eqeq12d 2840 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥) ↔ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
4847imbi2d 343 . . . . . . 7 (𝑥 = 𝑤 → ((𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)) ↔ (𝜑 → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))))
49 rsp2 3216 . . . . . . . . 9 (∀𝑦𝑌𝑥𝑋 𝐴 𝐿 → ((𝑦𝑌𝑥𝑋) → 𝐴 𝐿))
5049, 16syl11 33 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → (𝜑𝐴 𝐿))
5112ovmpt4g 7300 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑌𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
52513com12 1119 . . . . . . . . . 10 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
5317ovmpt4g 7300 . . . . . . . . . 10 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = 𝐴)
5452, 53eqtr4d 2862 . . . . . . . . 9 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
55543expia 1117 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → (𝐴 𝐿 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
5650, 55syld 47 . . . . . . 7 ((𝑦𝑌𝑥𝑋) → (𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
5723, 24, 25, 33, 40, 44, 48, 56vtocl2gaf 3579 . . . . . 6 ((𝑧𝑌𝑤𝑋) → (𝜑 → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
5857com12 32 . . . . 5 (𝜑 → ((𝑧𝑌𝑤𝑋) → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
59583impib 1112 . . . 4 ((𝜑𝑧𝑌𝑤𝑋) → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
6059mpoeq3dva 7234 . . 3 (𝜑 → (𝑧𝑌, 𝑤𝑋 ↦ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
6122, 60eqtr4d 2862 . 2 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)))
622, 1cnmpt2nd 22280 . . 3 (𝜑 → (𝑧𝑌, 𝑤𝑋𝑤) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
632, 1cnmpt1st 22279 . . 3 (𝜑 → (𝑧𝑌, 𝑤𝑋𝑧) ∈ ((𝐾 ×t 𝐽) Cn 𝐾))
642, 1, 62, 63, 5cnmpt22f 22286 . 2 (𝜑 → (𝑧𝑌, 𝑤𝑋 ↦ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
6561, 64eqeltrd 2916 1 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141   cuni 4841   × cxp 5556   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  cmpo 7161  Topctop 21504  TopOnctopon 21521   Cn ccn 21835   ×t ctx 22171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fo 6364  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-map 8411  df-topgen 16720  df-top 21505  df-topon 21522  df-bases 21557  df-cn 21838  df-tx 22173
This theorem is referenced by:  cnmpt2k  22299  htpycc  23587
  Copyright terms: Public domain W3C validator