Step | Hyp | Ref
| Expression |
1 | | cnmptcom.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | cnmptcom.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
3 | | txtopon 22740 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
4 | 1, 2, 3 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
5 | | cnmptcom.6 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
6 | | cntop2 22390 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top) |
7 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ Top) |
8 | | toptopon2 22065 |
. . . . . . . . 9
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
9 | 7, 8 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
10 | | cnf2 22398 |
. . . . . . . 8
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶∪ 𝐿) |
11 | 4, 9, 5, 10 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶∪ 𝐿) |
12 | | eqid 2740 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) |
13 | 12 | fmpo 7901 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶∪ 𝐿) |
14 | | ralcom 3283 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 ↔ ∀𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿) |
15 | 13, 14 | bitr3i 276 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶∪ 𝐿 ↔ ∀𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿) |
16 | 11, 15 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ 𝑌 ∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿) |
17 | | eqid 2740 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) |
18 | 17 | fmpo 7901 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑌 ∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 ↔ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴):(𝑌 × 𝑋)⟶∪ 𝐿) |
19 | 16, 18 | sylib 217 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴):(𝑌 × 𝑋)⟶∪ 𝐿) |
20 | 19 | ffnd 6599 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) Fn (𝑌 × 𝑋)) |
21 | | fnov 7399 |
. . . 4
⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) Fn (𝑌 × 𝑋) ↔ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑧 ∈ 𝑌, 𝑤 ∈ 𝑋 ↦ (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤))) |
22 | 20, 21 | sylib 217 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑧 ∈ 𝑌, 𝑤 ∈ 𝑋 ↦ (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤))) |
23 | | nfcv 2909 |
. . . . . . 7
⊢
Ⅎ𝑦𝑧 |
24 | | nfcv 2909 |
. . . . . . 7
⊢
Ⅎ𝑥𝑧 |
25 | | nfcv 2909 |
. . . . . . 7
⊢
Ⅎ𝑥𝑤 |
26 | | nfv 1921 |
. . . . . . . 8
⊢
Ⅎ𝑦𝜑 |
27 | | nfcv 2909 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝑥 |
28 | | nfmpo2 7350 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) |
29 | 27, 28, 23 | nfov 7301 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) |
30 | | nfmpo1 7349 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) |
31 | 23, 30, 27 | nfov 7301 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥) |
32 | 29, 31 | nfeq 2922 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥) |
33 | 26, 32 | nfim 1903 |
. . . . . . 7
⊢
Ⅎ𝑦(𝜑 → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥)) |
34 | | nfv 1921 |
. . . . . . . 8
⊢
Ⅎ𝑥𝜑 |
35 | | nfmpo1 7349 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) |
36 | 25, 35, 24 | nfov 7301 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) |
37 | | nfmpo2 7350 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) |
38 | 24, 37, 25 | nfov 7301 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤) |
39 | 36, 38 | nfeq 2922 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤) |
40 | 34, 39 | nfim 1903 |
. . . . . . 7
⊢
Ⅎ𝑥(𝜑 → (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤)) |
41 | | oveq2 7279 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑦) = (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧)) |
42 | | oveq1 7278 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑦(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥)) |
43 | 41, 42 | eqeq12d 2756 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → ((𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑦) = (𝑦(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥) ↔ (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥))) |
44 | 43 | imbi2d 341 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((𝜑 → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑦) = (𝑦(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥)) ↔ (𝜑 → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥)))) |
45 | | oveq1 7278 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧)) |
46 | | oveq2 7279 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤)) |
47 | 45, 46 | eqeq12d 2756 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥) ↔ (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤))) |
48 | 47 | imbi2d 341 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → ((𝜑 → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥)) ↔ (𝜑 → (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤)))) |
49 | | rsp2 3139 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑌 ∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ 𝐿 → ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ∪ 𝐿)) |
50 | 49, 16 | syl11 33 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → (𝜑 → 𝐴 ∈ ∪ 𝐿)) |
51 | 12 | ovmpt4g 7414 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐴 ∈ ∪ 𝐿) → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑦) = 𝐴) |
52 | 51 | 3com12 1122 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐿) → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑦) = 𝐴) |
53 | 17 | ovmpt4g 7414 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐿) → (𝑦(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥) = 𝐴) |
54 | 52, 53 | eqtr4d 2783 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ 𝐿) → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑦) = (𝑦(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥)) |
55 | 54 | 3expia 1120 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → (𝐴 ∈ ∪ 𝐿 → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑦) = (𝑦(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥))) |
56 | 50, 55 | syld 47 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → (𝜑 → (𝑥(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑦) = (𝑦(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑥))) |
57 | 23, 24, 25, 33, 40, 44, 48, 56 | vtocl2gaf 3514 |
. . . . . 6
⊢ ((𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑋) → (𝜑 → (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤))) |
58 | 57 | com12 32 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑋) → (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤))) |
59 | 58 | 3impib 1115 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑋) → (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧) = (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤)) |
60 | 59 | mpoeq3dva 7346 |
. . 3
⊢ (𝜑 → (𝑧 ∈ 𝑌, 𝑤 ∈ 𝑋 ↦ (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧)) = (𝑧 ∈ 𝑌, 𝑤 ∈ 𝑋 ↦ (𝑧(𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴)𝑤))) |
61 | 22, 60 | eqtr4d 2783 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑧 ∈ 𝑌, 𝑤 ∈ 𝑋 ↦ (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧))) |
62 | 2, 1 | cnmpt2nd 22818 |
. . 3
⊢ (𝜑 → (𝑧 ∈ 𝑌, 𝑤 ∈ 𝑋 ↦ 𝑤) ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) |
63 | 2, 1 | cnmpt1st 22817 |
. . 3
⊢ (𝜑 → (𝑧 ∈ 𝑌, 𝑤 ∈ 𝑋 ↦ 𝑧) ∈ ((𝐾 ×t 𝐽) Cn 𝐾)) |
64 | 2, 1, 62, 63, 5 | cnmpt22f 22824 |
. 2
⊢ (𝜑 → (𝑧 ∈ 𝑌, 𝑤 ∈ 𝑋 ↦ (𝑤(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)𝑧)) ∈ ((𝐾 ×t 𝐽) Cn 𝐿)) |
65 | 61, 64 | eqeltrd 2841 |
1
⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿)) |