MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptcom Structured version   Visualization version   GIF version

Theorem cnmptcom 22829
Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmptcom.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptcom.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptcom.6 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Assertion
Ref Expression
cnmptcom (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐿   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmptcom
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptcom.3 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmptcom.4 . . . . . . . . 9 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txtopon 22742 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 584 . . . . . . . 8 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmptcom.6 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
6 cntop2 22392 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
75, 6syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
8 toptopon2 22067 . . . . . . . . 9 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
97, 8sylib 217 . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
10 cnf2 22400 . . . . . . . 8 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
114, 9, 5, 10syl3anc 1370 . . . . . . 7 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
12 eqid 2738 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1312fmpo 7908 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 𝐿 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿)
14 ralcom 3166 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 𝐿 ↔ ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
1513, 14bitr3i 276 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶ 𝐿 ↔ ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
1611, 15sylib 217 . . . . . 6 (𝜑 → ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
17 eqid 2738 . . . . . . 7 (𝑦𝑌, 𝑥𝑋𝐴) = (𝑦𝑌, 𝑥𝑋𝐴)
1817fmpo 7908 . . . . . 6 (∀𝑦𝑌𝑥𝑋 𝐴 𝐿 ↔ (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
1916, 18sylib 217 . . . . 5 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
2019ffnd 6601 . . . 4 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) Fn (𝑌 × 𝑋))
21 fnov 7405 . . . 4 ((𝑦𝑌, 𝑥𝑋𝐴) Fn (𝑌 × 𝑋) ↔ (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
2220, 21sylib 217 . . 3 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
23 nfcv 2907 . . . . . . 7 𝑦𝑧
24 nfcv 2907 . . . . . . 7 𝑥𝑧
25 nfcv 2907 . . . . . . 7 𝑥𝑤
26 nfv 1917 . . . . . . . 8 𝑦𝜑
27 nfcv 2907 . . . . . . . . . 10 𝑦𝑥
28 nfmpo2 7356 . . . . . . . . . 10 𝑦(𝑥𝑋, 𝑦𝑌𝐴)
2927, 28, 23nfov 7305 . . . . . . . . 9 𝑦(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧)
30 nfmpo1 7355 . . . . . . . . . 10 𝑦(𝑦𝑌, 𝑥𝑋𝐴)
3123, 30, 27nfov 7305 . . . . . . . . 9 𝑦(𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)
3229, 31nfeq 2920 . . . . . . . 8 𝑦(𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)
3326, 32nfim 1899 . . . . . . 7 𝑦(𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
34 nfv 1917 . . . . . . . 8 𝑥𝜑
35 nfmpo1 7355 . . . . . . . . . 10 𝑥(𝑥𝑋, 𝑦𝑌𝐴)
3625, 35, 24nfov 7305 . . . . . . . . 9 𝑥(𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)
37 nfmpo2 7356 . . . . . . . . . 10 𝑥(𝑦𝑌, 𝑥𝑋𝐴)
3824, 37, 25nfov 7305 . . . . . . . . 9 𝑥(𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
3936, 38nfeq 2920 . . . . . . . 8 𝑥(𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
4034, 39nfim 1899 . . . . . . 7 𝑥(𝜑 → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
41 oveq2 7283 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧))
42 oveq1 7282 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
4341, 42eqeq12d 2754 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) ↔ (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
4443imbi2d 341 . . . . . . 7 (𝑦 = 𝑧 → ((𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)) ↔ (𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥))))
45 oveq1 7282 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧))
46 oveq2 7283 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
4745, 46eqeq12d 2754 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥) ↔ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
4847imbi2d 341 . . . . . . 7 (𝑥 = 𝑤 → ((𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑥)) ↔ (𝜑 → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))))
49 rsp2 3138 . . . . . . . . 9 (∀𝑦𝑌𝑥𝑋 𝐴 𝐿 → ((𝑦𝑌𝑥𝑋) → 𝐴 𝐿))
5049, 16syl11 33 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → (𝜑𝐴 𝐿))
5112ovmpt4g 7420 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑌𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
52513com12 1122 . . . . . . . . . 10 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
5317ovmpt4g 7420 . . . . . . . . . 10 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = 𝐴)
5452, 53eqtr4d 2781 . . . . . . . . 9 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
55543expia 1120 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → (𝐴 𝐿 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
5650, 55syld 47 . . . . . . 7 ((𝑦𝑌𝑥𝑋) → (𝜑 → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
5723, 24, 25, 33, 40, 44, 48, 56vtocl2gaf 3515 . . . . . 6 ((𝑧𝑌𝑤𝑋) → (𝜑 → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
5857com12 32 . . . . 5 (𝜑 → ((𝑧𝑌𝑤𝑋) → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
59583impib 1115 . . . 4 ((𝜑𝑧𝑌𝑤𝑋) → (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧) = (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
6059mpoeq3dva 7352 . . 3 (𝜑 → (𝑧𝑌, 𝑤𝑋 ↦ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑧(𝑦𝑌, 𝑥𝑋𝐴)𝑤)))
6122, 60eqtr4d 2781 . 2 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧𝑌, 𝑤𝑋 ↦ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)))
622, 1cnmpt2nd 22820 . . 3 (𝜑 → (𝑧𝑌, 𝑤𝑋𝑤) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
632, 1cnmpt1st 22819 . . 3 (𝜑 → (𝑧𝑌, 𝑤𝑋𝑧) ∈ ((𝐾 ×t 𝐽) Cn 𝐾))
642, 1, 62, 63, 5cnmpt22f 22826 . 2 (𝜑 → (𝑧𝑌, 𝑤𝑋 ↦ (𝑤(𝑥𝑋, 𝑦𝑌𝐴)𝑧)) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
6561, 64eqeltrd 2839 1 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   cuni 4839   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  Topctop 22042  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-tx 22713
This theorem is referenced by:  cnmpt2k  22839  htpycc  24143
  Copyright terms: Public domain W3C validator