MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl2ga Structured version   Visualization version   GIF version

Theorem vtocl2ga 3537
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2138 and ax-11 2155. (Revised by Gino Giotto, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.)
Hypotheses
Ref Expression
vtocl2ga.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2ga.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2ga.3 ((𝑥𝐶𝑦𝐷) → 𝜑)
Assertion
Ref Expression
vtocl2ga ((𝐴𝐶𝐵𝐷) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)

Proof of Theorem vtocl2ga
StepHypRef Expression
1 vtocl2ga.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
21imbi2d 341 . . 3 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
3 vtocl2ga.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
43imbi2d 341 . . . . 5 (𝑥 = 𝐴 → ((𝑦𝐷𝜑) ↔ (𝑦𝐷𝜓)))
5 vtocl2ga.3 . . . . . 6 ((𝑥𝐶𝑦𝐷) → 𝜑)
65ex 414 . . . . 5 (𝑥𝐶 → (𝑦𝐷𝜑))
74, 6vtoclga 3536 . . . 4 (𝐴𝐶 → (𝑦𝐷𝜓))
87com12 32 . . 3 (𝑦𝐷 → (𝐴𝐶𝜓))
92, 8vtoclga 3536 . 2 (𝐵𝐷 → (𝐴𝐶𝜒))
109impcom 409 1 ((𝐴𝐶𝐵𝐷) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811
This theorem is referenced by:  solin  5574  caovcan  7562  xpord2pred  8081  pwfseqlem2  10603  mulcanenq  10904  ltaddnq  10918  ltrnq  10923  genpv  10943  wrdind  14619  fsumrelem  15700  imasleval  17431  fullfunc  17801  fthfunc  17802  symggrplem  18702  pf1ind  21744  mretopd  22466  dvlip  25380  scvxcvx  26358  issubgoilem  30251  cnre2csqlem  32555
  Copyright terms: Public domain W3C validator