MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl2ga Structured version   Visualization version   GIF version

Theorem vtocl2ga 3495
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2142 and ax-11 2158. (Revised by Gino Giotto, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.)
Hypotheses
Ref Expression
vtocl2ga.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2ga.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2ga.3 ((𝑥𝐶𝑦𝐷) → 𝜑)
Assertion
Ref Expression
vtocl2ga ((𝐴𝐶𝐵𝐷) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)

Proof of Theorem vtocl2ga
StepHypRef Expression
1 vtocl2ga.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
21imbi2d 344 . . 3 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
3 vtocl2ga.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
43imbi2d 344 . . . . 5 (𝑥 = 𝐴 → ((𝑦𝐷𝜑) ↔ (𝑦𝐷𝜓)))
5 vtocl2ga.3 . . . . . 6 ((𝑥𝐶𝑦𝐷) → 𝜑)
65ex 416 . . . . 5 (𝑥𝐶 → (𝑦𝐷𝜑))
74, 6vtoclga 3494 . . . 4 (𝐴𝐶 → (𝑦𝐷𝜓))
87com12 32 . . 3 (𝑦𝐷 → (𝐴𝐶𝜓))
92, 8vtoclga 3494 . 2 (𝐵𝐷 → (𝐴𝐶𝜒))
109impcom 411 1 ((𝐴𝐶𝐵𝐷) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830
This theorem is referenced by:  solin  5470  caovcan  7353  pwfseqlem2  10124  mulcanenq  10425  ltaddnq  10439  ltrnq  10444  genpv  10464  wrdind  14136  fsumrelem  15215  imasleval  16877  fullfunc  17240  fthfunc  17241  symggrplem  18120  pf1ind  21079  mretopd  21797  dvlip  24697  scvxcvx  25675  issubgoilem  29147  cnre2csqlem  31385  xpord2pred  33351
  Copyright terms: Public domain W3C validator