MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl2ga Structured version   Visualization version   GIF version

Theorem vtocl2ga 3514
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2137 and ax-11 2154. (Revised by Gino Giotto, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.)
Hypotheses
Ref Expression
vtocl2ga.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2ga.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2ga.3 ((𝑥𝐶𝑦𝐷) → 𝜑)
Assertion
Ref Expression
vtocl2ga ((𝐴𝐶𝐵𝐷) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)

Proof of Theorem vtocl2ga
StepHypRef Expression
1 vtocl2ga.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
21imbi2d 341 . . 3 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
3 vtocl2ga.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
43imbi2d 341 . . . . 5 (𝑥 = 𝐴 → ((𝑦𝐷𝜑) ↔ (𝑦𝐷𝜓)))
5 vtocl2ga.3 . . . . . 6 ((𝑥𝐶𝑦𝐷) → 𝜑)
65ex 413 . . . . 5 (𝑥𝐶 → (𝑦𝐷𝜑))
74, 6vtoclga 3513 . . . 4 (𝐴𝐶 → (𝑦𝐷𝜓))
87com12 32 . . 3 (𝑦𝐷 → (𝐴𝐶𝜓))
92, 8vtoclga 3513 . 2 (𝐵𝐷 → (𝐴𝐶𝜒))
109impcom 408 1 ((𝐴𝐶𝐵𝐷) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  solin  5528  caovcan  7476  pwfseqlem2  10415  mulcanenq  10716  ltaddnq  10730  ltrnq  10735  genpv  10755  wrdind  14435  fsumrelem  15519  imasleval  17252  fullfunc  17622  fthfunc  17623  symggrplem  18523  pf1ind  21521  mretopd  22243  dvlip  25157  scvxcvx  26135  issubgoilem  29622  cnre2csqlem  31860  xpord2pred  33792
  Copyright terms: Public domain W3C validator