| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl2ga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2142 and ax-11 2158. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtocl2ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2ga.3 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) |
| Ref | Expression |
|---|---|
| vtocl2ga | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2ga.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 → 𝜓) ↔ (𝐴 ∈ 𝐶 → 𝜒))) |
| 3 | vtocl2ga.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ 𝐷 → 𝜑) ↔ (𝑦 ∈ 𝐷 → 𝜓))) |
| 5 | vtocl2ga.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) | |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜑)) |
| 7 | 4, 6 | vtoclga 3543 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜓)) |
| 8 | 7 | com12 32 | . . 3 ⊢ (𝑦 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜓)) |
| 9 | 2, 8 | vtoclga 3543 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜒)) |
| 10 | 9 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: vtocl3ga 3549 vtocl4ga 3552 solin 5573 caovcan 7593 xpord2pred 8124 pwfseqlem2 10612 mulcanenq 10913 ltaddnq 10927 ltrnq 10932 genpv 10952 wrdind 14687 fsumrelem 15773 imasleval 17504 fullfunc 17870 fthfunc 17871 symggrplem 18811 pf1ind 22242 mretopd 22979 dvlip 25898 scvxcvx 26896 issubgoilem 31189 cnre2csqlem 33900 |
| Copyright terms: Public domain | W3C validator |