| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl2ga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2141 and ax-11 2157. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtocl2ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2ga.3 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) |
| Ref | Expression |
|---|---|
| vtocl2ga | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2ga.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 → 𝜓) ↔ (𝐴 ∈ 𝐶 → 𝜒))) |
| 3 | vtocl2ga.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ 𝐷 → 𝜑) ↔ (𝑦 ∈ 𝐷 → 𝜓))) |
| 5 | vtocl2ga.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) | |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜑)) |
| 7 | 4, 6 | vtoclga 3556 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜓)) |
| 8 | 7 | com12 32 | . . 3 ⊢ (𝑦 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜓)) |
| 9 | 2, 8 | vtoclga 3556 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜒)) |
| 10 | 9 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: vtocl3ga 3562 vtocl4ga 3565 solin 5588 caovcan 7611 xpord2pred 8144 pwfseqlem2 10673 mulcanenq 10974 ltaddnq 10988 ltrnq 10993 genpv 11013 wrdind 14740 fsumrelem 15823 imasleval 17555 fullfunc 17921 fthfunc 17922 symggrplem 18862 pf1ind 22293 mretopd 23030 dvlip 25950 scvxcvx 26948 issubgoilem 31241 cnre2csqlem 33941 |
| Copyright terms: Public domain | W3C validator |