![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocl2ga | Structured version Visualization version GIF version |
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2141 and ax-11 2158. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
Ref | Expression |
---|---|
vtocl2ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl2ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl2ga.3 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) |
Ref | Expression |
---|---|
vtocl2ga | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl2ga.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 → 𝜓) ↔ (𝐴 ∈ 𝐶 → 𝜒))) |
3 | vtocl2ga.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ 𝐷 → 𝜑) ↔ (𝑦 ∈ 𝐷 → 𝜓))) |
5 | vtocl2ga.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) | |
6 | 5 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜑)) |
7 | 4, 6 | vtoclga 3589 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜓)) |
8 | 7 | com12 32 | . . 3 ⊢ (𝑦 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜓)) |
9 | 2, 8 | vtoclga 3589 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜒)) |
10 | 9 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: vtocl3ga 3595 vtocl4ga 3599 solin 5634 caovcan 7654 xpord2pred 8186 pwfseqlem2 10728 mulcanenq 11029 ltaddnq 11043 ltrnq 11048 genpv 11068 wrdind 14770 fsumrelem 15855 imasleval 17601 fullfunc 17973 fthfunc 17974 symggrplem 18919 pf1ind 22380 mretopd 23121 dvlip 26052 scvxcvx 27047 issubgoilem 31292 cnre2csqlem 33856 |
Copyright terms: Public domain | W3C validator |