| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl2ga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2144 and ax-11 2160. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtocl2ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2ga.3 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) |
| Ref | Expression |
|---|---|
| vtocl2ga | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2ga.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 → 𝜓) ↔ (𝐴 ∈ 𝐶 → 𝜒))) |
| 3 | vtocl2ga.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ 𝐷 → 𝜑) ↔ (𝑦 ∈ 𝐷 → 𝜓))) |
| 5 | vtocl2ga.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) | |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜑)) |
| 7 | 4, 6 | vtoclga 3528 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜓)) |
| 8 | 7 | com12 32 | . . 3 ⊢ (𝑦 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜓)) |
| 9 | 2, 8 | vtoclga 3528 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜒)) |
| 10 | 9 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: vtocl3ga 3534 vtocl4ga 3537 solin 5549 caovcan 7550 xpord2pred 8075 pwfseqlem2 10550 mulcanenq 10851 ltaddnq 10865 ltrnq 10870 genpv 10890 wrdind 14629 fsumrelem 15714 imasleval 17445 fullfunc 17815 fthfunc 17816 symggrplem 18792 pf1ind 22270 mretopd 23007 dvlip 25925 scvxcvx 26923 issubgoilem 31240 cnre2csqlem 33923 |
| Copyright terms: Public domain | W3C validator |