| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl2ga | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2142 and ax-11 2158. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
| Ref | Expression |
|---|---|
| vtocl2ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2ga.3 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) |
| Ref | Expression |
|---|---|
| vtocl2ga | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2ga.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 → 𝜓) ↔ (𝐴 ∈ 𝐶 → 𝜒))) |
| 3 | vtocl2ga.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ 𝐷 → 𝜑) ↔ (𝑦 ∈ 𝐷 → 𝜓))) |
| 5 | vtocl2ga.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) | |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜑)) |
| 7 | 4, 6 | vtoclga 3546 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝑦 ∈ 𝐷 → 𝜓)) |
| 8 | 7 | com12 32 | . . 3 ⊢ (𝑦 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜓)) |
| 9 | 2, 8 | vtoclga 3546 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 ∈ 𝐶 → 𝜒)) |
| 10 | 9 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: vtocl3ga 3552 vtocl4ga 3555 solin 5576 caovcan 7596 xpord2pred 8127 pwfseqlem2 10619 mulcanenq 10920 ltaddnq 10934 ltrnq 10939 genpv 10959 wrdind 14694 fsumrelem 15780 imasleval 17511 fullfunc 17877 fthfunc 17878 symggrplem 18818 pf1ind 22249 mretopd 22986 dvlip 25905 scvxcvx 26903 issubgoilem 31196 cnre2csqlem 33907 |
| Copyright terms: Public domain | W3C validator |