MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl2ga Structured version   Visualization version   GIF version

Theorem vtocl2ga 3590
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) Avoid ax-10 2141 and ax-11 2158. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.)
Hypotheses
Ref Expression
vtocl2ga.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2ga.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2ga.3 ((𝑥𝐶𝑦𝐷) → 𝜑)
Assertion
Ref Expression
vtocl2ga ((𝐴𝐶𝐵𝐷) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)

Proof of Theorem vtocl2ga
StepHypRef Expression
1 vtocl2ga.2 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
21imbi2d 340 . . 3 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
3 vtocl2ga.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
43imbi2d 340 . . . . 5 (𝑥 = 𝐴 → ((𝑦𝐷𝜑) ↔ (𝑦𝐷𝜓)))
5 vtocl2ga.3 . . . . . 6 ((𝑥𝐶𝑦𝐷) → 𝜑)
65ex 412 . . . . 5 (𝑥𝐶 → (𝑦𝐷𝜑))
74, 6vtoclga 3589 . . . 4 (𝐴𝐶 → (𝑦𝐷𝜓))
87com12 32 . . 3 (𝑦𝐷 → (𝐴𝐶𝜓))
92, 8vtoclga 3589 . 2 (𝐵𝐷 → (𝐴𝐶𝜒))
109impcom 407 1 ((𝐴𝐶𝐵𝐷) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819
This theorem is referenced by:  vtocl3ga  3595  vtocl4ga  3599  solin  5634  caovcan  7654  xpord2pred  8186  pwfseqlem2  10728  mulcanenq  11029  ltaddnq  11043  ltrnq  11048  genpv  11068  wrdind  14770  fsumrelem  15855  imasleval  17601  fullfunc  17973  fthfunc  17974  symggrplem  18919  pf1ind  22380  mretopd  23121  dvlip  26052  scvxcvx  27047  issubgoilem  31292  cnre2csqlem  33856
  Copyright terms: Public domain W3C validator