Step | Hyp | Ref
| Expression |
1 | | oveq1 7162 |
. . 3
⊢ (𝑎 = 𝑌 → (𝑎𝐹𝑠) = (𝑌𝐹𝑠)) |
2 | | 2fveq3 6667 |
. . 3
⊢ (𝑎 = 𝑌 → (𝐻‘(card‘𝑎)) = (𝐻‘(card‘𝑌))) |
3 | 1, 2 | eqeq12d 2774 |
. 2
⊢ (𝑎 = 𝑌 → ((𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)) ↔ (𝑌𝐹𝑠) = (𝐻‘(card‘𝑌)))) |
4 | | oveq2 7163 |
. . 3
⊢ (𝑠 = 𝑅 → (𝑌𝐹𝑠) = (𝑌𝐹𝑅)) |
5 | 4 | eqeq1d 2760 |
. 2
⊢ (𝑠 = 𝑅 → ((𝑌𝐹𝑠) = (𝐻‘(card‘𝑌)) ↔ (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌)))) |
6 | | nfcv 2919 |
. . 3
⊢
Ⅎ𝑥𝑎 |
7 | | nfcv 2919 |
. . 3
⊢
Ⅎ𝑟𝑎 |
8 | | nfcv 2919 |
. . 3
⊢
Ⅎ𝑟𝑠 |
9 | | pwfseqlem4.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
10 | | nfmpo1 7233 |
. . . . . 6
⊢
Ⅎ𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
11 | 9, 10 | nfcxfr 2917 |
. . . . 5
⊢
Ⅎ𝑥𝐹 |
12 | | nfcv 2919 |
. . . . 5
⊢
Ⅎ𝑥𝑟 |
13 | 6, 11, 12 | nfov 7185 |
. . . 4
⊢
Ⅎ𝑥(𝑎𝐹𝑟) |
14 | 13 | nfeq1 2934 |
. . 3
⊢
Ⅎ𝑥(𝑎𝐹𝑟) = (𝐻‘(card‘𝑎)) |
15 | | nfmpo2 7234 |
. . . . . 6
⊢
Ⅎ𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
16 | 9, 15 | nfcxfr 2917 |
. . . . 5
⊢
Ⅎ𝑟𝐹 |
17 | 7, 16, 8 | nfov 7185 |
. . . 4
⊢
Ⅎ𝑟(𝑎𝐹𝑠) |
18 | 17 | nfeq1 2934 |
. . 3
⊢
Ⅎ𝑟(𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)) |
19 | | oveq1 7162 |
. . . 4
⊢ (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟)) |
20 | | 2fveq3 6667 |
. . . 4
⊢ (𝑥 = 𝑎 → (𝐻‘(card‘𝑥)) = (𝐻‘(card‘𝑎))) |
21 | 19, 20 | eqeq12d 2774 |
. . 3
⊢ (𝑥 = 𝑎 → ((𝑥𝐹𝑟) = (𝐻‘(card‘𝑥)) ↔ (𝑎𝐹𝑟) = (𝐻‘(card‘𝑎)))) |
22 | | oveq2 7163 |
. . . 4
⊢ (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠)) |
23 | 22 | eqeq1d 2760 |
. . 3
⊢ (𝑟 = 𝑠 → ((𝑎𝐹𝑟) = (𝐻‘(card‘𝑎)) ↔ (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)))) |
24 | | vex 3413 |
. . . . . 6
⊢ 𝑥 ∈ V |
25 | | vex 3413 |
. . . . . 6
⊢ 𝑟 ∈ V |
26 | | fvex 6675 |
. . . . . . 7
⊢ (𝐻‘(card‘𝑥)) ∈ V |
27 | | fvex 6675 |
. . . . . . 7
⊢ (𝐷‘∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}) ∈ V |
28 | 26, 27 | ifex 4473 |
. . . . . 6
⊢ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) ∈ V |
29 | 9 | ovmpt4g 7297 |
. . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) ∈ V) → (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
30 | 24, 25, 28, 29 | mp3an 1458 |
. . . . 5
⊢ (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) |
31 | | iftrue 4429 |
. . . . 5
⊢ (𝑥 ∈ Fin → if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) = (𝐻‘(card‘𝑥))) |
32 | 30, 31 | syl5eq 2805 |
. . . 4
⊢ (𝑥 ∈ Fin → (𝑥𝐹𝑟) = (𝐻‘(card‘𝑥))) |
33 | 32 | adantr 484 |
. . 3
⊢ ((𝑥 ∈ Fin ∧ 𝑟 ∈ 𝑉) → (𝑥𝐹𝑟) = (𝐻‘(card‘𝑥))) |
34 | 6, 7, 8, 14, 18, 21, 23, 33 | vtocl2gaf 3496 |
. 2
⊢ ((𝑎 ∈ Fin ∧ 𝑠 ∈ 𝑉) → (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎))) |
35 | 3, 5, 34 | vtocl2ga 3495 |
1
⊢ ((𝑌 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌))) |