MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpos Structured version   Visualization version   GIF version

Theorem ovmpos 7555
Description: Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
ovmpos.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpos ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpos
StepHypRef Expression
1 elex 3480 . . 3 (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V)
2 nfcv 2898 . . . . 5 𝑥𝐴
3 nfcv 2898 . . . . 5 𝑦𝐴
4 nfcv 2898 . . . . 5 𝑦𝐵
5 nfcsb1v 3898 . . . . . . 7 𝑥𝐴 / 𝑥𝑅
65nfel1 2915 . . . . . 6 𝑥𝐴 / 𝑥𝑅 ∈ V
7 ovmpos.3 . . . . . . . . 9 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
8 nfmpo1 7487 . . . . . . . . 9 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
97, 8nfcxfr 2896 . . . . . . . 8 𝑥𝐹
10 nfcv 2898 . . . . . . . 8 𝑥𝑦
112, 9, 10nfov 7435 . . . . . . 7 𝑥(𝐴𝐹𝑦)
1211, 5nfeq 2912 . . . . . 6 𝑥(𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅
136, 12nfim 1896 . . . . 5 𝑥(𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)
14 nfcsb1v 3898 . . . . . . 7 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅
1514nfel1 2915 . . . . . 6 𝑦𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V
16 nfmpo2 7488 . . . . . . . . 9 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
177, 16nfcxfr 2896 . . . . . . . 8 𝑦𝐹
183, 17, 4nfov 7435 . . . . . . 7 𝑦(𝐴𝐹𝐵)
1918, 14nfeq 2912 . . . . . 6 𝑦(𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅
2015, 19nfim 1896 . . . . 5 𝑦(𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
21 csbeq1a 3888 . . . . . . 7 (𝑥 = 𝐴𝑅 = 𝐴 / 𝑥𝑅)
2221eleq1d 2819 . . . . . 6 (𝑥 = 𝐴 → (𝑅 ∈ V ↔ 𝐴 / 𝑥𝑅 ∈ V))
23 oveq1 7412 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
2423, 21eqeq12d 2751 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) = 𝑅 ↔ (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅))
2522, 24imbi12d 344 . . . . 5 (𝑥 = 𝐴 → ((𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅) ↔ (𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅)))
26 csbeq1a 3888 . . . . . . 7 (𝑦 = 𝐵𝐴 / 𝑥𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
2726eleq1d 2819 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑥𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V))
28 oveq2 7413 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
2928, 26eqeq12d 2751 . . . . . 6 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
3027, 29imbi12d 344 . . . . 5 (𝑦 = 𝐵 → ((𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝑦) = 𝐴 / 𝑥𝑅) ↔ (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)))
317ovmpt4g 7554 . . . . . 6 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥𝐹𝑦) = 𝑅)
32313expia 1121 . . . . 5 ((𝑥𝐶𝑦𝐷) → (𝑅 ∈ V → (𝑥𝐹𝑦) = 𝑅))
332, 3, 4, 13, 20, 25, 30, 32vtocl2gaf 3558 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅))
34 csbcom 4395 . . . . 5 𝐴 / 𝑥𝐵 / 𝑦𝑅 = 𝐵 / 𝑦𝐴 / 𝑥𝑅
3534eleq1i 2825 . . . 4 (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V ↔ 𝐵 / 𝑦𝐴 / 𝑥𝑅 ∈ V)
3634eqeq2i 2748 . . . 4 ((𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅 ↔ (𝐴𝐹𝐵) = 𝐵 / 𝑦𝐴 / 𝑥𝑅)
3733, 35, 363imtr4g 296 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅 ∈ V → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
381, 37syl5 34 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉 → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅))
39383impia 1117 1 ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  (class class class)co 7405  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  finxpreclem2  37408
  Copyright terms: Public domain W3C validator